Searched for: person:raabev01
in-biosketch:true
Safety and immunogenicity of a delayed booster dose of the rVSVΔG-ZEBOV-GP vaccine for prevention of Ebola virus disease: a multicentre, open-label, phase 2 randomised controlled trial
Davey, Richard T; Collins, Gary L; Rouphael, Nadine; Poliquin, Guillaume; McConnell, Rosemary; Grubbs, Gabrielle; Moir, Susan L; Langley, Joanne M; Teitelbaum, Marc; Hewlett, Angela L; McLellan, Susan L F; Bhadelia, Nahid; Raabe, Vanessa N; Mulligan, Mark J; Maljkovic Berry, Irina; Dighero-Kemp, Bonnie; Kurtz, Jonathan R; Hensley, Lisa E; Dozier, Nelson C E; Marron, Lindsay C B; DuChene, Alain; Kuhn, Jens H; Brown, Shawn K; Khurana, Surender; Lane, H Clifford; Neaton, James D
BACKGROUND:rVSVΔG-ZEBOV-GP is the first approved vaccine with clinical efficacy against Ebola virus disease. Although a seroprotective threshold has not been defined for those at occupational risk of exposure, the current vaccine strategy is to attain a sustained high level of antibody titres. The aim of this trial was to explore the effects of delayed boosting upon both the height and duration of antibody titres following primary immunisation. METHODS:plaque-forming unit per mL of VSVΔG-ZEBOV-GP. 18 months later, individuals who consented and were still eligible were randomly assigned 1:1 to receive either a homologous booster dose or no booster. Study visits for safety and serial blood collections for antibody titres were done on enrolled participants at months 0, 1, 3, 6, 12, 18, 19, 24, 30, and 36. Through July, 2021, a web-based application was used for randomisation, including assignments with schedules for each of the five sites using mixed permuted blocks. The trial was not masked to participants or site staff. The primary endpoint was a comparison of geometric mean titres (GMTs) of anti-Ebola virus glycoprotein IgG antibody at month 36 (ie, 18 months after randomisation) for all randomly assigned participants who completed the 36 months of follow-up (primary analysis cohort). Investigators were aware of antibody titres from baseline (enrolment) through month 18 but were masked to summary data by randomisation group after month 18. This study is registered with ClinicalTrials.gov (NCT02788227). FINDINGS/RESULTS:Of the 248 participants who enrolled and received their primary immunisation, 114 proceeded to the randomisation step at month 18. The two randomisation groups were balanced: 57 participants (24 [42%] of whom were female; median age was 42 years [IQR 35-50]) were randomly assigned to the booster group and 57 (24 [42%] of whom were female; median age was 42 years [IQR 36-51]) to the no-booster group. Of those randomly assigned, 92 participants (45 in the booster group and 47 in the no-booster group) completed 36 months of follow-up. At 18 months after primary immunisation, GMTs in the no-booster group increased from a baseline of 10 ELISA units (EU)/mL (95% CI 7-14) to 1451 EU/mL (1118-1882); GMTs in the booster group increased from 9 EU/mL (6-16) to 1769 EU/mL (1348-2321). At month 19, GMTs were 31 408 EU/mL (23 181-42 554) for the booster group and 1406 EU/mL (1078-1833) for the no-booster group; at month 36, GMTs were 10 146 EU/mL (7960-12 933) for the booster group and 1240 EU/mL (984-1563) for the no-booster group. Accordingly, the geometric mean ratio (GMR) of antibody titres had increased almost 21-fold more in the booster versus no-booster group at 1 month after booster administration (GMR 20·6; 95% CI 18·2-23·0; p<0·0001) and was still over 7-fold higher at month 36 (GMR 7·8; 95% CI 5·5-10·2; p<0·0001). Consistent with previous reports of this vaccine's side-effects, transient mono-articular or oligo-articular arthritis was diagnosed in 18 (9%) of 207 primary vaccination recipients; after randomisation, arthritis was diagnosed in one (2%) of 57 participants in the no-booster group. No new cases of arthritis developed after booster administration. Four serious adverse events occurred following randomisation: one (epistaxis) in the booster group and three (gastrointestinal haemorrhage, prostate cancer, and tachyarrhythmia) in the no-booster group. None of the serious adverse events was judged attributable to the booster vaccination assignment. INTERPRETATION/CONCLUSIONS:In addition to no new safety concerns and in marked contrast to earlier trials evaluating short-term boosting, delaying a rVSVΔG-ZEBOV-GP booster until month 18 resulted in an increase in GMT that remained several-fold above the no-booster group GMT for at least 18 months. These findings could have implications for defining the optimal timing of booster doses as pre-exposure prophylaxis in populations at ongoing risk for Ebola virus exposure. FUNDING/BACKGROUND:The Division of Intramural Research and the Division of Clinical Research of the National Institute of Allergy and Infectious Diseases at the US National Institutes of Health, Canadian Immunization Research Network through the Public Health Agency of Canada, Canadian Institutes of Health Research, and the US Defense Threat Reduction Agency.
PMID: 39374605
ISSN: 2666-5247
CID: 5705942
A Phase 2 Clinical Trial to Evaluate the Safety, Reactogenicity, and Immunogenicity of Different Prime-Boost Vaccination Schedules of 2013 and 2017 A(H7N9) Inactivated Influenza Virus Vaccines Administered with and without AS03 Adjuvant in Healthy US Adults
Rostad, Christina A; Atmar, Robert L; Walter, Emmanuel B; Frey, Sharon; Meier, Jeffery L; Sherman, Amy C; Lai, Lilin; Tsong, Rachel; Kao, Carol M; Raabe, Vanessa; El Sahly, Hana M; Keitel, Wendy A; Whitaker, Jennifer A; Smith, Michael J; Schmader, Kenneth E; Swamy, Geeta K; Abate, Getahun; Winokur, Patricia; Buchanan, Wendy; Cross, Kaitlyn; Wegel, Ashley; Xu, Yongxian; Yildirim, Inci; Kamidani, Satoshi; Rouphael, Nadine; Roberts, Paul C; Mulligan, Mark J; Anderson, Evan J
INTRODUCTION/BACKGROUND:A surge of human influenza A(H7N9) cases began in 2016 in China due to an antigenically distinct lineage. Data are needed about the safety and immunogenicity of 2013 and 2017 A(H7N9) inactivated influenza vaccines (IIVs) and the effects of AS03 adjuvant, prime-boost interval, and priming effects of 2013 and 2017 A(H7N9) IIVs. METHODS:Healthy adults (n=180), ages 19-50 years, were enrolled into this partially-blinded, randomized, multi-center Phase 2 clinical trial. Participants were randomly assigned to 1 of 6 vaccination groups evaluating homologous versus heterologous prime-boost strategies with two different boost intervals (21 versus 120 days) and two dosages (3.75 or 15 μg of hemagglutinin) administered with or without AS03 adjuvant. Reactogenicity, safety, and immunogenicity measured by hemagglutination inhibition (HAI) and neutralizing antibody titers were assessed. RESULTS:Two doses of A(H7N9) IIV were well tolerated, and no safety issues were identified. Although most participants had injection site and systemic reactogenicity, these symptoms were mostly mild to moderate in severity; injection site reactogenicity was greater in vaccination groups receiving adjuvant. Immune responses were greater after an adjuvanted second dose, and with a longer interval between prime and boost. The highest HAI GMT (95%CI) observed against the 2017 A(H7N9) strain was 133.4 (83.6, 212.6) among participants who received homologous, adjuvanted 3.75 ug+AS03/2017 doses with delayed boost interval. CONCLUSIONS:Administering AS03 adjuvant with the second H7N9 IIV dose and extending the boost interval to 4 months resulted in higher peak antibody responses. These observations can broadly inform strategic approaches for pandemic preparedness. (NCT03589807).
PMID: 38537255
ISSN: 1537-6591
CID: 5644952
Crimean-Congo Hemorrhagic Fever Virus for Clinicians-Epidemiology, Clinical Manifestations, and Prevention
Frank, Maria G; Weaver, Gretchen; Raabe, Vanessa; ,; ,; ,
Crimean-Congo hemorrhagic fever (CCHF) is a tickborne infection that can range from asymptomatic to fatal and has been described in >30 countries. Early identification and isolation of patients with suspected or confirmed CCHF and the use of appropriate prevention and control measures are essential for preventing human-to-human transmission. Here, we provide an overview of the epidemiology, clinical features, and prevention and control of CCHF. CCHF poses a continued public health threat given its wide geographic distribution, potential to spread to new regions, propensity for genetic variability, and potential for severe and fatal illness, in addition to the limited medical countermeasures for prophylaxis and treatment. A high index of suspicion, comprehensive travel and epidemiologic history, and clinical evaluation are essential for prompt diagnosis. Infection control measures can be effective in reducing the risk for transmission but require correct and consistent application.
PMCID:11060446
PMID: 38666548
ISSN: 1080-6059
CID: 5657802
Crimean Congo Hemorrhagic Fever Virus for Clinicians-Virology, Pathogenesis, and Pathology
Frank, Maria G; Weaver, Gretchen; Raabe, Vanessa; ,
Crimean-Congo hemorrhagic fever (CCHF), caused by CCHF virus, is a tickborne disease that can cause a range of illness outcomes, from asymptomatic infection to fatal viral hemorrhagic fever; the disease has been described in >30 countries. We conducted a literature review to provide an overview of the virology, pathogenesis, and pathology of CCHF for clinicians. The virus life cycle and molecular interactions are complex and not fully described. Although pathogenesis and immunobiology are not yet fully understood, it is clear that multiple processes contribute to viral entry, replication, and pathological damage. Limited autopsy reports describe multiorgan involvement with extravasation and hemorrhages. Advanced understanding of CCHF virus pathogenesis and immunology will improve patient care and accelerate the development of medical countermeasures for CCHF.
PMCID:11060449
PMID: 38666566
ISSN: 1080-6059
CID: 5657822
Crimean-Congo Hemorrhagic Fever Virus for Clinicians-Diagnosis, Clinical Management, and Therapeutics
Frank, Maria G; Weaver, Gretchen; Raabe, Vanessa; ,; ,; ,
Crimean-Congo hemorrhagic fever virus (CCHFV) is the most geographically widespread tickborne viral infection worldwide and has a fatality rate of up to 62%. Despite its widespread range and high fatality rate, no vaccines or treatments are currently approved by regulatory agencies in the United States or Europe. Supportive treatment remains the standard of care, but the use of antiviral medications developed for other viral infections have been considered. We reviewed published literature to summarize the main aspects of CCHFV infection in humans. We provide an overview of diagnostic testing and management and medical countermeasures, including investigational vaccines and limited therapeutics. CCHFV continues to pose a public health threat because of its wide geographic distribution, potential to spread to new regions, propensity for genetic variability, potential for severe and fatal illness, and limited medical countermeasures for prophylaxis and treatment. Clinicians should become familiar with available diagnostic and management tools for CCHFV infections in humans.
PMCID:11060459
PMID: 38666553
ISSN: 1080-6059
CID: 5657812
A Pregnant Adolescent with COVID-19 and Multisystem Inflammatory Syndrome in Children [Case Report]
Trostle, Megan E; Grossman, Tracy B; Penfield, Christina A; Phoon, Colin K L; Raabe, Vanessa N; Sloane, Mark F; Roman, Ashley S
Multisystem inflammatory syndrome in children (MIS-C), a new condition related to coronavirus disease 2019 (COVID-19) in the pediatric population, was recognized by physicians in the United Kingdom in April 2020. Given those up to the age of 21 years can be affected, pregnant adolescents and young adults are susceptible. However, there is scant information on how MIS-C may affect pregnancy and whether the presentation differs in the pregnant population. We report a case of a pregnant adolescent with COVID-19 and MIS-C with a favorable outcome. This case highlights the considerations in managing a critically ill pregnant patient with a novel illness and the importance of a multidisciplinary team in coordinating care.
PMCID:10874691
PMID: 38370327
ISSN: 2157-6998
CID: 5633982
Cellular and humoral immunity to Ebola Zaire glycoprotein and viral vector proteins following immunization with recombinant vesicular stomatitis virus-based Ebola vaccine (rVSVΔG-ZEBOV-GP)
Raabe, Vanessa; Lai, Lilin; Morales, Juliet; Xu, Yongxian; Rouphael, Nadine; Davey, Richard T; Mulligan, Mark J
While effective at preventing Zaire ebolavirus (ZEBOV) disease, cellular immunity to ZEBOV and vector-directed immunity elicited by the recombinant vesicular stomatitis virus expressing ZEBOV glycoprotein (rVSVΔG-ZEBOV-GP) vaccine remain poorly understood. Sera and peripheral blood mononuclear cells were collected from 32 participants enrolled in a prospective multicenter study [ClinicalTrials.gov NCT02788227] before vaccination and up to six months post-vaccination. IgM and IgG antibodies, IgG-producing memory B cells (MBCs), and T cell reactivity to ZEBOV glycoprotein (ZEBOV-GP), vesicular stomatitis virus-Indiana strain (VSV-I) matrix (M) protein, and VSV-I nucleoprotein (NP) were measured using ELISA, ELISpot, and flow cytometry, respectively. 11/32 (34.4%) participants previously received a different investigational ZEBOV vaccine prior to enrollment and 21/32 (65.6%) participants were ZEBOV vaccine naïve. Both ZEBOV vaccine naïve and experienced participants had increased ZEBOV-GP IgG optical densities (ODs) post-rVSVΔG-ZEBOV-GP vaccination while only ZEBOV vaccine naïve participants had increased ZEBOV-GP IgM ODs. Transient IgM and IgG antibody responses to VSV-I M protein and NP were observed in a minority of participants. All participants had detectable ZEBOV-GP specific IgG-producing MBCs by 6 months post-vaccination while no changes were observed in the median IgG-producing MBCs to VSV-I proteins. T cell responses to ZEBOV-GP differed between ZEBOV vaccine experienced and ZEBOV vaccine naïve participants. T cell responses to both VSV-I M protein and VSV-I NP were observed, but were of a low magnitude. The rVSVΔG-ZEBOV-GP vaccine elicits robust humoral and memory B cell responses to ZEBOV glycoprotein in both ZEBOV vaccine naïve and experienced individuals and can generate vector-directed T cell immunity. Further research is needed to understand the significance of pre-existing vector and target antigen immunity on responses to booster doses of rVSVΔG-ZEBOV-GP and other rVSV-vectored vaccines.
PMCID:10021073
PMID: 36725433
ISSN: 1873-2518
CID: 5468352
Dose-Response of a Norovirus GII.2 Controlled Human Challenge Model Inoculum
Rouphael, Nadine; Beck, Allison; Kirby, Amy E; Liu, Pengbo; Natrajan, Muktha S; Lai, Lilin; Phadke, Varun; Winston, Juton; Raabe, Vanessa; Collins, Matthew H; Girmay, Tigisty; Alvarez, Alicarmen; Beydoun, Nour; Karmali, Vinit; Altieri-Rivera, Joanne; Lindesmith, Lisa C; Anderson, Evan J; Wang, Yuke; El-Khorazaty, Jill; Petrie, Carey; Baric, Ralph S; Baqar, Shahida; Moe, Christine L; Mulligan, Mark J
BACKGROUND:Genogroup II noroviruses are the most common cause of acute infectious gastroenteritis. We evaluated the use of a new GII.2 inoculum in a human challenge. METHODS:Forty-four healthy adults (36 secretor-positive and 8 secretor-negative for histo-blood group antigens) were challenged with ascending doses of a new safety-tested Snow Mountain Virus (SMV) GII.2 norovirus inoculum (1.2x10 4 to 1.2x10 7 genomic equivalent copies [GEC]; n=38) or placebo ( n=6). Illness was defined as diarrhea and/or vomiting post challenge in subjects with evidence of infection (defined as GII.2 norovirus RNA detection in stool and/or anti-SMV IgG seroconversion). RESULTS:The highest dose was associated with SMV infection in 90%, and illness in 70% of subjects with 10 of 12 secretor-positive (83%) and 4 of 8 secretor-negative (50%) becoming ill. There was no association between pre-challenge anti-SMV serum IgG concentration, carbohydrate-binding blockade antibody, or salivary IgA and infection. The ID50 was 5.1×10 5 GEC. CONCLUSIONS:High rates of infection and illness were observed in both secretor-positive and negative subjects in this challenge study. However, a high dose will be required to achieve the target of 75% illness to make this an efficient model for evaluating potential norovirus vaccines and therapeutics.
PMID: 35137154
ISSN: 1537-6613
CID: 5176072
Lassa Virus Infection: a Summary for Clinicians
Raabe, Vanessa; Mehta, Aneesh K; Evans, Jared D
OBJECTIVES/OBJECTIVE:This summary on Lassa virus (LASV) infection and Lassa fever disease (LF) was developed from a clinical perspective to provide clinicians with a condensed, accessible understanding of the current literature. The information provided highlights pathogenesis, clinical features, and diagnostics emphasizing therapies and vaccines that have demonstrated potential value for use in clinical or research environments. METHODS:We conducted an integrative literature review on the clinical and pathological features, vaccines, and treatments for LASV infection, focusing on recent studies and in vivo evidence from humans and/or non-human primates (NHPs), when available. RESULTS:Two antiviral medications with potential benefit for the treatment of LASV infection and 1 for post-exposure prophylaxis were identified, although a larger number of therapeutic candidates are currently being evaluated. Multiple vaccine platforms are in pre-clinical development for LASV prevention, but data from human clinical trials are not yet available. CONCLUSION/CONCLUSIONS:We provide succinct summaries of medical countermeasures against LASV to give the busy clinician a rapid reference. Although there are no approved drugs or vaccines for LF, we provide condensed information from a literature review for measures that can be taken when faced with a suspected infection, including investigational treatment options and hospital engineering controls.
PMID: 35395384
ISSN: 1878-3511
CID: 5219742
Pediatric Osteoarticular Infections Caused by Mycobacteria Tuberculosis Complex: A 26-year Review of Cases in San Diego, CA
Drobish, Ian; Ramchandar, Nanda; Raabe, Vanessa; Pong, Alice; Bradley, John; Cannavino, Christopher
BACKGROUND:Osteoarticular infections (OAIs) account for 10%-20% of extrapulmonary Mycobacteria tuberculosis (MTB) complex infections in children and 1%-2% of all pediatric tuberculosis infections. Treatment regimens and durations typically mirror recommendations for other types of extrapulmonary MTB, but there are significant variations in practice, with some experts suggesting a treatment course of 12 months or longer. METHODS:We conducted a retrospective review of children diagnosed with MTB complex OAI and cared for between December 31, 1992, and December 31, 2018, at a tertiary care pediatric hospital near the United States-Mexico border. RESULTS:We identified 21 children with MTB complex OAI during the study period. Concurrent pulmonary disease (9.5%), meningitis (9.5%), and intra-abdominal involvement (14.3%) were all observed. MTB complex was identified by culture from operative samples in 15/21 children (71.4%); 8/15 (53.3%) cultures were positive for Mycobacterium bovis. Open bone biopsy was the most common procedure for procurement of a tissue sample and had the highest culture yield. The median duration of antimicrobial therapy was 52 weeks (interquartile range, 46-58). Successful completion of therapy was documented in 15 children (71.4%). Nine children (42.9%) experienced long-term sequelae related to their infection. CONCLUSION/CONCLUSIONS:Among the 21 children with MTB complex OAI assessed, 8 of 15 (53.3%) children with a positive tissue culture had M. bovis, representing a higher percentage than in previous reports and potentially reflecting its presence in unpasteurized dairy products in the California-Baja region. Bone biopsy produced the highest culture yield in this study. Given the rarity of this disease, multicenter collaborative studies are needed to improve our understanding of the presentation and management of pediatric MTB complex OAI.
PMID: 34974478
ISSN: 1532-0987
CID: 5106732