Searched for: person:ramasr02
in-biosketch:yes
A pilot open-label study of aldose reductase inhibition with AT-001 (caficrestat) in patients hospitalized for COVID-19 infection: Results from a registry-based matched-control analysis
Gaztanaga, Juan; Ramasamy, Ravichandran; Schmidt, Ann Marie; Fishman, Glenn; Schendelman, Shoshana; Thangavelu, Karthinathan; Perfetti, Riccardo; Katz, Stuart D
BACKGROUND AND AIMS/OBJECTIVE:Cardiometabolic disease may confer increased risk of adverse outcomes in COVID-19 patients by activation of the aldose reductase pathway. We hypothesized that aldose reductase inhibition with AT-001 might reduce viral inflammation and risk of adverse outcomes in diabetic patients with COVID-19. METHODS:We conducted an open-label prospective phase 2 clinical trial to assess safety, tolerability and efficacy of AT-001 in patients hospitalized with COVID-19 infection, history of diabetes mellitus and chronic heart disease. Eligible participants were prospectively enrolled and treated with AT-001 1500Â mg BID for up to 14 days. Safety, tolerability, survival and length of hospital stay (LOS) were collected from the electronic medical record and compared with data from two matched control groups (MC1 and MC2) selected from a deidentified registry of COVID-19 patients at the same institution. RESULTS:AT-001 was safe and well tolerated in the 10 participants who received the study drug. In-hospital mortality observed in the AT-001 group was 20% vs. 31% in MC1 and 27% in MC2. Mean LOS observed in the AT-001 group was 5 days vs. 10 days in MC1 and 25 days in MC2. CONCLUSIONS:In hospitalized patients with COVID-19 and co-morbid diabetes mellitus and heart disease, treatment with AT-001 was safe and well tolerated. Exposure to AT-001 was associated with a trend of reduced mortality and shortened LOS. While the observed trend did not reach statistical significance, the present study provides the rationale for investigating potential benefit of AT-001 in COVID 19 affected patients in future studies.
PMCID:8556062
PMID: 34752935
ISSN: 1878-0334
CID: 5050382
Diabetes and Cardiovascular Complications: The Epidemics Continue
López-DÃez, Raquel; Egaña-Gorroño, Lander; Senatus, Laura; Shekhtman, Alexander; Ramasamy, Ravichandran; Schmidt, Ann Marie
PURPOSE OF REVIEW:The cardiovascular complications of type 1 and 2 diabetes are major causes of morbidity and mortality. Extensive efforts have been made to maximize glycemic control; this strategy reduces certain manifestations of cardiovascular complications. There are drawbacks, however, as intensive glycemic control does not impart perennial protective benefits, and these efforts are not without potential adverse sequelae, such as hypoglycemic events. RECENT FINDINGS:Here, the authors have focused on updates into key areas under study for mechanisms driving these cardiovascular disorders in diabetes, including roles for epigenetics and gene expression, interferon networks, and mitochondrial dysfunction. Updates on the cardioprotective roles of the new classes of hyperglycemia-targeting therapies, the sodium glucose transport protein 2 inhibitors and the agonists of the glucagon-like peptide 1 receptor system, are reviewed. In summary, insights from ongoing research and the cardioprotective benefits of the newer type 2 diabetes therapies are providing novel areas for therapeutic opportunities in diabetes and CVD.
PMCID:8173334
PMID: 34081211
ISSN: 1534-3170
CID: 4924452
Journey to a Receptor for Advanced Glycation End Products Connection in Severe Acute Respiratory Syndrome Coronavirus 2 Infection: With Stops Along the Way in the Lung, Heart, Blood Vessels, and Adipose Tissue
Roy, Divya; Ramasamy, Ravichandran; Schmidt, Ann Marie
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has affected millions of people worldwide and the pandemic has yet to wane. Despite its associated significant morbidity and mortality, there are no definitive cures and no fully preventative measures to combat SARS-CoV-2. Hence, the urgency to identify the pathobiological mechanisms underlying increased risk for and the severity of SARS-CoV-2 infection is mounting. One contributing factor, the accumulation of damage-associated molecular pattern molecules, is a leading trigger for the activation of nuclear factor-kB and the IRF (interferon regulatory factors), such as IRF7. Activation of these pathways, particularly in the lung and other organs, such as the heart, contributes to a burst of cytokine release, which predisposes to significant tissue damage, loss of function, and mortality. The receptor for advanced glycation end products (RAGE) binds damage-associated molecular patterns is expressed in the lung and heart, and in priming organs, such as the blood vessels (in diabetes) and adipose tissue (in obesity), and transduces the pathological signals emitted by damage-associated molecular patterns. It is proposed that damage-associated molecular pattern-RAGE enrichment in these priming tissues, and in the lungs and heart during active infection, contributes to the widespread tissue damage induced by SARS-CoV-2. Accordingly, the RAGE axis might play seminal roles in and be a target for therapeutic intervention in SARS-CoV-2 infection.
PMCID:7837689
PMID: 33327744
ISSN: 1524-4636
CID: 4861812
Aldose Reductase: An Emerging Target for Development of Interventions for Diabetic Cardiovascular Complications
Jannapureddy, Sravya; Sharma, Mira; Yepuri, Gautham; Schmidt, Ann Marie; Ramasamy, Ravichandran
Diabetes is a leading cause of cardiovascular morbidity and mortality. Despite numerous treatments for cardiovascular disease (CVD), for patients with diabetes, these therapies provide less benefit for protection from CVD. These considerations spur the concept that diabetes-specific, disease-modifying therapies are essential to identify especially as the diabetes epidemic continues to expand. In this context, high levels of blood glucose stimulate the flux via aldose reductase (AR) pathway leading to metabolic and signaling changes in cells of the cardiovascular system. In animal models flux via AR in hearts is increased by diabetes and ischemia and its inhibition protects diabetic and non-diabetic hearts from ischemia-reperfusion injury. In mouse models of diabetic atherosclerosis, human AR expression accelerates progression and impairs regression of atherosclerotic plaques. Genetic studies have revealed that single nucleotide polymorphisms (SNPs) of the ALD2 (human AR gene) is associated with diabetic complications, including cardiorenal complications. This Review presents current knowledge regarding the roles for AR in the causes and consequences of diabetic cardiovascular disease and the status of AR inhibitors in clinical trials. Studies from both human subjects and animal models are presented to highlight the breadth of evidence linking AR to the cardiovascular consequences of diabetes.
PMCID:7992003
PMID: 33776930
ISSN: 1664-2392
CID: 5107652
A Pilot Open-label Study of Aldose Reductase Inhibition with AT-001 (caficrestat) in Patients Hospitalized for COVID-19 Infection: Results from a Registry-based Matched-control Analysis [Meeting Abstract]
Gaztanaga, Juan; Ramasamy, Ravichandran; Schmidt, Ann Marie; Fishman, Glenn; Shendelman, Shoshana; Thangavelu, Karthinathan; Perfetti, Riccardo; Katz, Stuart D.
ISI:000746754900022
ISSN: 0002-8703
CID: 5208602
Inflammation Meets Metabolism: Roles for the Receptor for Advanced Glycation End Products Axis in Cardiovascular Disease
Senatus, Laura; MacLean, Michael; Arivazhagan, Lakshmi; Egaña-Gorroño, Lander; López-DÃez, Raquel; Manigrasso, Michaele B; Ruiz, Henry H; Vasquez, Carolina; Wilson, Robin; Shekhtman, Alexander; Gugger, Paul F; Ramasamy, Ravichandran; Schmidt, Ann Marie
Fundamental modulation of energy metabolism in immune cells is increasingly being recognized for the ability to impart important changes in cellular properties. In homeostasis, cells of the innate immune system, such as monocytes, macrophages and dendritic cells (DCs), are enabled to respond rapidly to various forms of acute cellular and environmental stress, such as pathogens. In chronic stress milieus, these cells may undergo a re-programming, thereby triggering processes that may instigate tissue damage and failure of resolution. In settings of metabolic dysfunction, moieties such as excess sugars (glucose, fructose and sucrose) accumulate in the tissues and may form advanced glycation end products (AGEs), which are signaling ligands for the receptor for advanced glycation end products (RAGE). In addition, cellular accumulation of cholesterol species such as that occurring upon macrophage engulfment of dead/dying cells, presents these cells with a major challenge to metabolize/efflux excess cholesterol. RAGE contributes to reduced expression and activities of molecules mediating cholesterol efflux. This Review chronicles examples of the roles that sugars and cholesterol, via RAGE, play in immune cells in instigation of maladaptive cellular signaling and the mediation of chronic cellular stress. At this time, emerging roles for the ligand-RAGE axis in metabolism-mediated modulation of inflammatory signaling in immune cells are being unearthed and add to the growing body of factors underlying pathological immunometabolism.
PMCID:8232874
PMID: 34178389
ISSN: 2084-6835
CID: 4936952
COVID-19 and the Heart and Vasculature: Novel Approaches to Reduce Virus-Induced Inflammation in Patients With Cardiovascular Disease
Kadosh, Bernard S; Garshick, Michael S; Gaztanaga, Juan; Moore, Kathryn J; Newman, Jonathan D; Pillinger, Michael; Ramasamy, Ravichandran; Reynolds, Harmony R; Shah, Binita; Hochman, Judith; Fishman, Glenn I; Katz, Stuart D
The coronavirus disease 2019 (COVID-19) pandemic presents an unprecedented challenge and opportunity for translational investigators to rapidly develop safe and effective therapeutic interventions. Greater risk of severe disease in COVID-19 patients with comorbid diabetes mellitus, obesity, and heart disease may be attributable to synergistic activation of vascular inflammation pathways associated with both COVID-19 and cardiometabolic disease. This mechanistic link provides a scientific framework for translational studies of drugs developed for treatment of cardiometabolic disease as novel therapeutic interventions to mitigate inflammation and improve outcomes in patients with COVID-19.
PMID: 32687400
ISSN: 1524-4636
CID: 4551152
RAGE impairs murine diabetic atherosclerosis regression and implicates IRF7 in macrophage inflammation and cholesterol metabolism
Senatus, Laura; López-DÃez, Raquel; Egaña-Gorroño, Lander; Liu, Jianhua; Hu, Jiyuan; Daffu, Gurdip; Li, Qing; Rahman, Karishma; Vengrenyuk, Yuliya; Barrett, Tessa J; Dewan, M Zahidunnabi; Guo, Liang; Fuller, Daniela; Finn, Aloke V; Virmani, Renu; Li, Huilin; Friedman, Richard A; Fisher, Edward A; Ramasamy, Ravichandran; Schmidt, Ann Marie
Despite advances in lipid-lowering therapies, people with diabetes continue to experience more limited cardiovascular benefits. In diabetes, hyperglycemia sustains inflammation and preempts vascular repair. We tested the hypothesis that the receptor for advanced glycation end-products (RAGE) contributes to these maladaptive processes. We report that transplantation of aortic arches from diabetic, Western diet-fed Ldlr-/- mice into diabetic Ager-/- (Ager, the gene encoding RAGE) versus WT diabetic recipient mice accelerated regression of atherosclerosis. RNA-sequencing experiments traced RAGE-dependent mechanisms principally to the recipient macrophages and linked RAGE to interferon signaling. Specifically, deletion of Ager in the regressing diabetic plaques downregulated interferon regulatory factor 7 (Irf7) in macrophages. Immunohistochemistry studies colocalized IRF7 and macrophages in both murine and human atherosclerotic plaques. In bone marrow-derived macrophages (BMDMs), RAGE ligands upregulated expression of Irf7, and in BMDMs immersed in a cholesterol-rich environment, knockdown of Irf7 triggered a switch from pro- to antiinflammatory gene expression and regulated a host of genes linked to cholesterol efflux and homeostasis. Collectively, this work adds a new dimension to the immunometabolic sphere of perturbations that impair regression of established diabetic atherosclerosis and suggests that targeting RAGE and IRF7 may facilitate vascular repair in diabetes.
PMID: 32641587
ISSN: 2379-3708
CID: 4534862
An Eclectic Cast of Cellular Actors Orchestrates Innate Immune Responses in the Mechanisms Driving Obesity and Metabolic Perturbation
Arivazhagan, Lakshmi; Ruiz, Henry H; Wilson, Robin A; Manigrasso, Michaele B; Gugger, Paul F; Fisher, Edward A; Moore, Kathryn J; Ramasamy, Ravichandran; Schmidt, Ann Marie
The escalating problem of obesity and its multiple metabolic and cardiovascular complications threatens the health and longevity of humans throughout the world. The cause of obesity and one of its chief complications, insulin resistance, involves the participation of multiple distinct organs and cell types. From the brain to the periphery, cell-intrinsic and intercellular networks converge to stimulate and propagate increases in body mass and adiposity, as well as disturbances of insulin sensitivity. This review focuses on the roles of the cadre of innate immune cells, both those that are resident in metabolic organs and those that are recruited into these organs in response to cues elicited by stressors such as overnutrition and reduced physical activity. Beyond the typical cast of innate immune characters invoked in the mechanisms of metabolic perturbation in these settings, such as neutrophils and monocytes/macrophages, these actors are joined by bone marrow-derived cells, such as eosinophils and mast cells and the intriguing innate lymphoid cells, which are present in the circulation and in metabolic organ depots. Upon high-fat feeding or reduced physical activity, phenotypic modulation of the cast of plastic innate immune cells ensues, leading to the production of mediators that affect inflammation, lipid handling, and metabolic signaling. Furthermore, their consequent interactions with adaptive immune cells, including myriad T-cell and B-cell subsets, compound these complexities. Notably, many of these innate immune cell-elicited signals in overnutrition may be modulated by weight loss, such as that induced by bariatric surgery. Recently, exciting insights into the biology and pathobiology of these cell type-specific niches are being uncovered by state-of-the-art techniques such as single-cell RNA-sequencing. This review considers the evolution of this field of research on innate immunity in obesity and metabolic perturbation, as well as future directions.
PMID: 32437306
ISSN: 1524-4571
CID: 4446972
Enhanced glycolysis and HIF-1α activation in adipose tissue macrophages sustains local and systemic interleukin-1β production in obesity
Sharma, Monika; Boytard, Ludovic; Hadi, Tarik; Koelwyn, Graeme; Simon, Russell; Ouimet, Mireille; Seifert, Lena; Spiro, Westley; Yan, Bo; Hutchison, Susan; Fisher, Edward A; Ramasamy, Ravichandran; Ramkhelawon, Bhama; Moore, Kathryn J
During obesity, macrophages infiltrate the visceral adipose tissue and promote inflammation that contributes to type II diabetes. Evidence suggests that the rewiring of cellular metabolism can regulate macrophage function. However, the metabolic programs that characterize adipose tissue macrophages (ATM) in obesity are poorly defined. Here, we demonstrate that ATM from obese mice exhibit metabolic profiles characterized by elevated glycolysis and oxidative phosphorylation, distinct from ATM from lean mice. Increased activation of HIF-1α in ATM of obese visceral adipose tissue resulted in induction of IL-1β and genes in the glycolytic pathway. Using a hypoxia-tracer, we show that HIF-1α nuclear translocation occurred both in hypoxic and non-hypoxic ATM suggesting that both hypoxic and pseudohypoxic stimuli activate HIF-1α and its target genes in ATM during diet-induced obesity. Exposure of macrophages to the saturated fatty acid palmitate increased glycolysis and HIF-1α expression, which culminated in IL-1β induction thereby simulating pseudohypoxia. Using mice with macrophage-specific targeted deletion of HIF-1α, we demonstrate the critical role of HIF-1α-derived from macrophages in regulating ATM accumulation, and local and systemic IL-1β production, but not in modulating systemic metabolic responses. Collectively, our data identify enhanced glycolysis and HIF-1α activation as drivers of low-grade inflammation in obesity.
PMCID:7101445
PMID: 32221369
ISSN: 2045-2322
CID: 4369912