Try a new search

Format these results:

Searched for:

person:renq01

in-biosketch:true

Total Results:

77


The 2008 update of the Aspergillus nidulans genome annotation: a community effort

Wortman, Jennifer Russo; Gilsenan, Jane Mabey; Joardar, Vinita; Deegan, Jennifer; Clutterbuck, John; Andersen, Mikael R; Archer, David; Bencina, Mojca; Braus, Gerhard; Coutinho, Pedro; von Dohren, Hans; Doonan, John; Driessen, Arnold J M; Durek, Pawel; Espeso, Eduardo; Fekete, Erzsebet; Flipphi, Michel; Estrada, Carlos Garcia; Geysens, Steven; Goldman, Gustavo; de Groot, Piet W J; Hansen, Kim; Harris, Steven D; Heinekamp, Thorsten; Helmstaedt, Kerstin; Henrissat, Bernard; Hofmann, Gerald; Homan, Tim; Horio, Tetsuya; Horiuchi, Hiroyuki; James, Steve; Jones, Meriel; Karaffa, Levente; Karanyi, Zsolt; Kato, Masashi; Keller, Nancy; Kelly, Diane E; Kiel, Jan A K W; Kim, Jung-Mi; van der Klei, Ida J; Klis, Frans M; Kovalchuk, Andriy; Krasevec, Nada; Kubicek, Christian P; Liu, Bo; Maccabe, Andrew; Meyer, Vera; Mirabito, Pete; Miskei, Marton; Mos, Magdalena; Mullins, Jonathan; Nelson, David R; Nielsen, Jens; Oakley, Berl R; Osmani, Stephen A; Pakula, Tiina; Paszewski, Andrzej; Paulsen, Ian; Pilsyk, Sebastian; Pocsi, Istvan; Punt, Peter J; Ram, Arthur F J; Ren, Qinghu; Robellet, Xavier; Robson, Geoff; Seiboth, Bernhard; van Solingen, Piet; Specht, Thomas; Sun, Jibin; Taheri-Talesh, Naimeh; Takeshita, Norio; Ussery, Dave; vanKuyk, Patricia A; Visser, Hans; van de Vondervoort, Peter J I; de Vries, Ronald P; Walton, Jonathan; Xiang, Xin; Xiong, Yi; Zeng, An Ping; Brandt, Bernd W; Cornell, Michael J; van den Hondel, Cees A M J J; Visser, Jacob; Oliver, Stephen G; Turner, Geoffrey
The identification and annotation of protein-coding genes is one of the primary goals of whole-genome sequencing projects, and the accuracy of predicting the primary protein products of gene expression is vital to the interpretation of the available data and the design of downstream functional applications. Nevertheless, the comprehensive annotation of eukaryotic genomes remains a considerable challenge. Many genomes submitted to public databases, including those of major model organisms, contain significant numbers of wrong and incomplete gene predictions. We present a community-based reannotation of the Aspergillus nidulans genome with the primary goal of increasing the number and quality of protein functional assignments through the careful review of experts in the field of fungal biology.
PMCID:2826280
PMID: 19146970
ISSN: 1096-0937
CID: 2245592

Complete genome sequence of the aerobic CO-oxidizing thermophile Thermomicrobium roseum

Wu, Dongying; Raymond, Jason; Wu, Martin; Chatterji, Sourav; Ren, Qinghu; Graham, Joel E; Bryant, Donald A; Robb, Frank; Colman, Albert; Tallon, Luke J; Badger, Jonathan H; Madupu, Ramana; Ward, Naomi L; Eisen, Jonathan A
In order to enrich the phylogenetic diversity represented in the available sequenced bacterial genomes and as part of an "Assembling the Tree of Life" project, we determined the genome sequence of Thermomicrobium roseum DSM 5159. T. roseum DSM 5159 is a red-pigmented, rod-shaped, Gram-negative extreme thermophile isolated from a hot spring that possesses both an atypical cell wall composition and an unusual cell membrane that is composed entirely of long-chain 1,2-diols. Its genome is composed of two circular DNA elements, one of 2,006,217 bp (referred to as the chromosome) and one of 919,596 bp (referred to as the megaplasmid). Strikingly, though few standard housekeeping genes are found on the megaplasmid, it does encode a complete system for chemotaxis including both chemosensory components and an entire flagellar apparatus. This is the first known example of a complete flagellar system being encoded on a plasmid and suggests a straightforward means for lateral transfer of flagellum-based motility. Phylogenomic analyses support the recent rRNA-based analyses that led to T. roseum being removed from the phylum Thermomicrobia and assigned to the phylum Chloroflexi. Because T. roseum is a deep-branching member of this phylum, analysis of its genome provides insights into the evolution of the Chloroflexi. In addition, even though this species is not photosynthetic, analysis of the genome provides some insight into the origins of photosynthesis in the Chloroflexi. Metabolic pathway reconstructions and experimental studies revealed new aspects of the biology of this species. For example, we present evidence that T. roseum oxidizes CO aerobically, making it the first thermophile known to do so. In addition, we propose that glycosylation of its carotenoids plays a crucial role in the adaptation of the cell membrane to this bacterium's thermophilic lifestyle. Analyses of published metagenomic sequences from two hot springs similar to the one from which this strain was isolated, show that close relatives of T. roseum DSM 5159 are present but have some key differences from the strain sequenced.
PMCID:2615216
PMID: 19148287
ISSN: 1932-6203
CID: 2245602

Genome degradation in Brucella ovis corresponds with narrowing of its host range and tissue tropism

Tsolis, Renee M; Seshadri, Rekha; Santos, Renato L; Sangari, Felix J; Lobo, Juan M Garcia; de Jong, Maarten F; Ren, Qinghu; Myers, Garry; Brinkac, Lauren M; Nelson, William C; Deboy, Robert T; Angiuoli, Samuel; Khouri, Hoda; Dimitrov, George; Robinson, Jeffrey R; Mulligan, Stephanie; Walker, Richard L; Elzer, Philip E; Hassan, Karl A; Paulsen, Ian T
Brucella ovis is a veterinary pathogen associated with epididymitis in sheep. Despite its genetic similarity to the zoonotic pathogens B. abortus, B. melitensis and B. suis, B. ovis does not cause zoonotic disease. Genomic analysis of the type strain ATCC25840 revealed a high percentage of pseudogenes and increased numbers of transposable elements compared to the zoonotic Brucella species, suggesting that genome degradation has occurred concomitant with narrowing of the host range of B. ovis. The absence of genomic island 2, encoding functions required for lipopolysaccharide biosynthesis, as well as inactivation of genes encoding urease, nutrient uptake and utilization, and outer membrane proteins may be factors contributing to the avirulence of B. ovis for humans. A 26.5 kb region of B. ovis ATCC25840 Chromosome II was absent from all the sequenced human pathogenic Brucella genomes, but was present in all of 17 B. ovis isolates tested and in three B. ceti isolates, suggesting that this DNA region may be of use for differentiating B. ovis from other Brucella spp. This is the first genomic analysis of a non-zoonotic Brucella species. The results suggest that inactivation of genes involved in nutrient acquisition and utilization, cell envelope structure and urease may have played a role in narrowing of the tissue tropism and host range of B. ovis.
PMCID:2677664
PMID: 19436743
ISSN: 1932-6203
CID: 2245622

Comparative genomics of the neglected human malaria parasite Plasmodium vivax

Carlton, Jane M; Adams, John H; Silva, Joana C; Bidwell, Shelby L; Lorenzi, Hernan; Caler, Elisabet; Crabtree, Jonathan; Angiuoli, Samuel V; Merino, Emilio F; Amedeo, Paolo; Cheng, Qin; Coulson, Richard M R; Crabb, Brendan S; Del Portillo, Hernando A; Essien, Kobby; Feldblyum, Tamara V; Fernandez-Becerra, Carmen; Gilson, Paul R; Gueye, Amy H; Guo, Xiang; Kang'a, Simon; Kooij, Taco W A; Korsinczky, Michael; Meyer, Esmeralda V-S; Nene, Vish; Paulsen, Ian; White, Owen; Ralph, Stuart A; Ren, Qinghu; Sargeant, Tobias J; Salzberg, Steven L; Stoeckert, Christian J; Sullivan, Steven A; Yamamoto, Marcio M; Hoffman, Stephen L; Wortman, Jennifer R; Gardner, Malcolm J; Galinski, Mary R; Barnwell, John W; Fraser-Liggett, Claire M
The human malaria parasite Plasmodium vivax is responsible for 25-40% of the approximately 515 million annual cases of malaria worldwide. Although seldom fatal, the parasite elicits severe and incapacitating clinical symptoms and often causes relapses months after a primary infection has cleared. Despite its importance as a major human pathogen, P. vivax is little studied because it cannot be propagated continuously in the laboratory except in non-human primates. We sequenced the genome of P. vivax to shed light on its distinctive biological features, and as a means to drive development of new drugs and vaccines. Here we describe the synteny and isochore structure of P. vivax chromosomes, and show that the parasite resembles other malaria parasites in gene content and metabolic potential, but possesses novel gene families and potential alternative invasion pathways not recognized previously. Completion of the P. vivax genome provides the scientific community with a valuable resource that can be used to advance investigation into this neglected species
PMCID:2651158
PMID: 18843361
ISSN: 1476-4687
CID: 96129

High-throughput phenotypic characterization of Pseudomonas aeruginosa membrane transport genes

Johnson, Daniel A; Tetu, Sasha G; Phillippy, Katherine; Chen, Joan; Ren, Qinghu; Paulsen, Ian T
The deluge of data generated by genome sequencing has led to an increasing reliance on bioinformatic predictions, since the traditional experimental approach of characterizing gene function one at a time cannot possibly keep pace with the sequence-based discovery of novel genes. We have utilized Biolog phenotype MicroArrays to identify phenotypes of gene knockout mutants in the opportunistic pathogen and versatile soil bacterium Pseudomonas aeruginosa in a relatively high-throughput fashion. Seventy-eight P. aeruginosa mutants defective in predicted sugar and amino acid membrane transporter genes were screened and clear phenotypes were identified for 27 of these. In all cases, these phenotypes were confirmed by independent growth assays on minimal media. Using qRT-PCR, we demonstrate that the expression levels of 11 of these transporter genes were induced from 4- to 90-fold by their substrates identified via phenotype analysis. Overall, the experimental data showed the bioinformatic predictions to be largely correct in 22 out of 27 cases, and led to the identification of novel transporter genes and a potentially new histamine catabolic pathway. Thus, rapid phenotype identification assays are an invaluable tool for confirming and extending bioinformatic predictions.
PMCID:2542419
PMID: 18833300
ISSN: 1553-7404
CID: 2245582

Complete genome sequence of the N2-fixing broad host range endophyte Klebsiella pneumoniae 342 and virulence predictions verified in mice

Fouts, Derrick E; Tyler, Heather L; DeBoy, Robert T; Daugherty, Sean; Ren, Qinghu; Badger, Jonathan H; Durkin, Anthony S; Huot, Heather; Shrivastava, Susmita; Kothari, Sagar; Dodson, Robert J; Mohamoud, Yasmin; Khouri, Hoda; Roesch, Luiz F W; Krogfelt, Karen A; Struve, Carsten; Triplett, Eric W; Methe, Barbara A
We report here the sequencing and analysis of the genome of the nitrogen-fixing endophyte, Klebsiella pneumoniae 342. Although K. pneumoniae 342 is a member of the enteric bacteria, it serves as a model for studies of endophytic, plant-bacterial associations due to its efficient colonization of plant tissues (including maize and wheat, two of the most important crops in the world), while maintaining a mutualistic relationship that encompasses supplying organic nitrogen to the host plant. Genomic analysis examined K. pneumoniae 342 for the presence of previously identified genes from other bacteria involved in colonization of, or growth in, plants. From this set, approximately one-third were identified in K. pneumoniae 342, suggesting additional factors most likely contribute to its endophytic lifestyle. Comparative genome analyses were used to provide new insights into this question. Results included the identification of metabolic pathways and other features devoted to processing plant-derived cellulosic and aromatic compounds, and a robust complement of transport genes (15.4%), one of the highest percentages in bacterial genomes sequenced. Although virulence and antibiotic resistance genes were predicted, experiments conducted using mouse models showed pathogenicity to be attenuated in this strain. Comparative genomic analyses with the presumed human pathogen K. pneumoniae MGH78578 revealed that MGH78578 apparently cannot fix nitrogen, and the distribution of genes essential to surface attachment, secretion, transport, and regulation and signaling varied between each genome, which may indicate critical divergences between the strains that influence their preferred host ranges and lifestyles (endophytic plant associations for K. pneumoniae 342 and presumably human pathogenesis for MGH78578). Little genome information is available concerning endophytic bacteria. The K. pneumoniae 342 genome will drive new research into this less-understood, but important category of bacterial-plant host relationships, which could ultimately enhance growth and nutrition of important agricultural crops and development of plant-derived products and biofuels.
PMCID:2453333
PMID: 18654632
ISSN: 1553-7404
CID: 2245572

Genome of the epsilonproteobacterial chemolithoautotroph Sulfurimonas denitrificans

Sievert, Stefan M; Scott, Kathleen M; Klotz, Martin G; Chain, Patrick S G; Hauser, Loren J; Hemp, James; Hugler, Michael; Land, Miriam; Lapidus, Alla; Larimer, Frank W; Lucas, Susan; Malfatti, Stephanie A; Meyer, Folker; Paulsen, Ian T; Ren, Qinghu; Simon, Jorg
Sulfur-oxidizing epsilonproteobacteria are common in a variety of sulfidogenic environments. These autotrophic and mixotrophic sulfur-oxidizing bacteria are believed to contribute substantially to the oxidative portion of the global sulfur cycle. In order to better understand the ecology and roles of sulfur-oxidizing epsilonproteobacteria, in particular those of the widespread genus Sulfurimonas, in biogeochemical cycles, the genome of Sulfurimonas denitrificans DSM1251 was sequenced. This genome has many features, including a larger size (2.2 Mbp), that suggest a greater degree of metabolic versatility or responsiveness to the environment than seen for most of the other sequenced epsilonproteobacteria. A branched electron transport chain is apparent, with genes encoding complexes for the oxidation of hydrogen, reduced sulfur compounds, and formate and the reduction of nitrate and oxygen. Genes are present for a complete, autotrophic reductive citric acid cycle. Many genes are present that could facilitate growth in the spatially and temporally heterogeneous sediment habitat from where Sulfurimonas denitrificans was originally isolated. Many resistance-nodulation-development family transporter genes (10 total) are present; of these, several are predicted to encode heavy metal efflux transporters. An elaborate arsenal of sensory and regulatory protein-encoding genes is in place, as are genes necessary to prevent and respond to oxidative stress.
PMCID:2258580
PMID: 18065616
ISSN: 1098-5336
CID: 2245562

Genome sequence of Babesia bovis and comparative analysis of apicomplexan hemoprotozoa

Brayton, Kelly A; Lau, Audrey O T; Herndon, David R; Hannick, Linda; Kappmeyer, Lowell S; Berens, Shawn J; Bidwell, Shelby L; Brown, Wendy C; Crabtree, Jonathan; Fadrosh, Doug; Feldblum, Tamara; Forberger, Heather A; Haas, Brian J; Howell, Jeanne M; Khouri, Hoda; Koo, Hean; Mann, David J; Norimine, Junzo; Paulsen, Ian T; Radune, Diana; Ren, Qinghu; Smith, Roger K Jr; Suarez, Carlos E; White, Owen; Wortman, Jennifer R; Knowles, Donald P Jr; McElwain, Terry F; Nene, Vishvanath M
Babesia bovis is an apicomplexan tick-transmitted pathogen of cattle imposing a global risk and severe constraints to livestock health and economic development. The complete genome sequence was undertaken to facilitate vaccine antigen discovery, and to allow for comparative analysis with the related apicomplexan hemoprotozoa Theileria parva and Plasmodium falciparum. At 8.2 Mbp, the B. bovis genome is similar in size to that of Theileria spp. Structural features of the B. bovis and T. parva genomes are remarkably similar, and extensive synteny is present despite several chromosomal rearrangements. In contrast, B. bovis and P. falciparum, which have similar clinical and pathological features, have major differences in genome size, chromosome number, and gene complement. Chromosomal synteny with P. falciparum is limited to microregions. The B. bovis genome sequence has allowed wide scale analyses of the polymorphic variant erythrocyte surface antigen protein (ves1 gene) family that, similar to the P. falciparum var genes, is postulated to play a role in cytoadhesion, sequestration, and immune evasion. The approximately 150 ves1 genes are found in clusters that are distributed throughout each chromosome, with an increased concentration adjacent to a physical gap on chromosome 1 that contains multiple ves1-like sequences. ves1 clusters are frequently linked to a novel family of variant genes termed smorfs that may themselves contribute to immune evasion, may play a role in variant erythrocyte surface antigen protein biology, or both. Initial expression analysis of ves1 and smorf genes indicates coincident transcription of multiple variants. B. bovis displays a limited metabolic potential, with numerous missing pathways, including two pathways previously described for the P. falciparum apicoplast. This reduced metabolic potential is reflected in the B. bovis apicoplast, which appears to have fewer nuclear genes targeted to it than other apicoplast containing organisms. Finally, comparative analyses have identified several novel vaccine candidates including a positional homolog of p67 and SPAG-1, Theileria sporozoite antigens targeted for vaccine development. The genome sequence provides a greater understanding of B. bovis metabolism and potential avenues for drug therapies and vaccine development.
PMCID:2034396
PMID: 17953480
ISSN: 1553-7374
CID: 2245552

The Chlamydomonas genome reveals the evolution of key animal and plant functions

Merchant, Sabeeha S; Prochnik, Simon E; Vallon, Olivier; Harris, Elizabeth H; Karpowicz, Steven J; Witman, George B; Terry, Astrid; Salamov, Asaf; Fritz-Laylin, Lillian K; Marechal-Drouard, Laurence; Marshall, Wallace F; Qu, Liang-Hu; Nelson, David R; Sanderfoot, Anton A; Spalding, Martin H; Kapitonov, Vladimir V; Ren, Qinghu; Ferris, Patrick; Lindquist, Erika; Shapiro, Harris; Lucas, Susan M; Grimwood, Jane; Schmutz, Jeremy; Cardol, Pierre; Cerutti, Heriberto; Chanfreau, Guillaume; Chen, Chun-Long; Cognat, Valerie; Croft, Martin T; Dent, Rachel; Dutcher, Susan; Fernandez, Emilio; Fukuzawa, Hideya; Gonzalez-Ballester, David; Gonzalez-Halphen, Diego; Hallmann, Armin; Hanikenne, Marc; Hippler, Michael; Inwood, William; Jabbari, Kamel; Kalanon, Ming; Kuras, Richard; Lefebvre, Paul A; Lemaire, Stephane D; Lobanov, Alexey V; Lohr, Martin; Manuell, Andrea; Meier, Iris; Mets, Laurens; Mittag, Maria; Mittelmeier, Telsa; Moroney, James V; Moseley, Jeffrey; Napoli, Carolyn; Nedelcu, Aurora M; Niyogi, Krishna; Novoselov, Sergey V; Paulsen, Ian T; Pazour, Greg; Purton, Saul; Ral, Jean-Philippe; Riano-Pachon, Diego Mauricio; Riekhof, Wayne; Rymarquis, Linda; Schroda, Michael; Stern, David; Umen, James; Willows, Robert; Wilson, Nedra; Zimmer, Sara Lana; Allmer, Jens; Balk, Janneke; Bisova, Katerina; Chen, Chong-Jian; Elias, Marek; Gendler, Karla; Hauser, Charles; Lamb, Mary Rose; Ledford, Heidi; Long, Joanne C; Minagawa, Jun; Page, M Dudley; Pan, Junmin; Pootakham, Wirulda; Roje, Sanja; Rose, Annkatrin; Stahlberg, Eric; Terauchi, Aimee M; Yang, Pinfen; Ball, Steven; Bowler, Chris; Dieckmann, Carol L; Gladyshev, Vadim N; Green, Pamela; Jorgensen, Richard; Mayfield, Stephen; Mueller-Roeber, Bernd; Rajamani, Sathish; Sayre, Richard T; Brokstein, Peter; Dubchak, Inna; Goodstein, David; Hornick, Leila; Huang, Y Wayne; Jhaveri, Jinal; Luo, Yigong; Martinez, Diego; Ngau, Wing Chi Abby; Otillar, Bobby; Poliakov, Alexander; Porter, Aaron; Szajkowski, Lukasz; Werner, Gregory; Zhou, Kemin; Grigoriev, Igor V; Rokhsar, Daniel S; Grossman, Arthur R
Chlamydomonas reinhardtii is a unicellular green alga whose lineage diverged from land plants over 1 billion years ago. It is a model system for studying chloroplast-based photosynthesis, as well as the structure, assembly, and function of eukaryotic flagella (cilia), which were inherited from the common ancestor of plants and animals, but lost in land plants. We sequenced the approximately 120-megabase nuclear genome of Chlamydomonas and performed comparative phylogenomic analyses, identifying genes encoding uncharacterized proteins that are likely associated with the function and biogenesis of chloroplasts or eukaryotic flagella. Analyses of the Chlamydomonas genome advance our understanding of the ancestral eukaryotic cell, reveal previously unknown genes associated with photosynthetic and flagellar functions, and establish links between ciliopathy and the composition and function of flagella.
PMCID:2875087
PMID: 17932292
ISSN: 1095-9203
CID: 2245542

Draft genome of the filarial nematode parasite Brugia malayi

Ghedin, Elodie; Wang, Shiliang; Spiro, David; Caler, Elisabet; Zhao, Qi; Crabtree, Jonathan; Allen, Jonathan E; Delcher, Arthur L; Guiliano, David B; Miranda-Saavedra, Diego; Angiuoli, Samuel V; Creasy, Todd; Amedeo, Paolo; Haas, Brian; El-Sayed, Najib M; Wortman, Jennifer R; Feldblyum, Tamara; Tallon, Luke; Schatz, Michael; Shumway, Martin; Koo, Hean; Salzberg, Steven L; Schobel, Seth; Pertea, Mihaela; Pop, Mihai; White, Owen; Barton, Geoffrey J; Carlow, Clotilde K S; Crawford, Michael J; Daub, Jennifer; Dimmic, Matthew W; Estes, Chris F; Foster, Jeremy M; Ganatra, Mehul; Gregory, William F; Johnson, Nicholas M; Jin, Jinming; Komuniecki, Richard; Korf, Ian; Kumar, Sanjay; Laney, Sandra; Li, Ben-Wen; Li, Wen; Lindblom, Tim H; Lustigman, Sara; Ma, Dong; Maina, Claude V; Martin, David M A; McCarter, James P; McReynolds, Larry; Mitreva, Makedonka; Nutman, Thomas B; Parkinson, John; Peregrin-Alvarez, Jose M; Poole, Catherine; Ren, Qinghu; Saunders, Lori; Sluder, Ann E; Smith, Katherine; Stanke, Mario; Unnasch, Thomas R; Ware, Jenna; Wei, Aguan D; Weil, Gary; Williams, Deryck J; Zhang, Yinhua; Williams, Steven A; Fraser-Liggett, Claire; Slatko, Barton; Blaxter, Mark L; Scott, Alan L
Parasitic nematodes that cause elephantiasis and river blindness threaten hundreds of millions of people in the developing world. We have sequenced the approximately 90 megabase (Mb) genome of the human filarial parasite Brugia malayi and predict approximately 11,500 protein coding genes in 71 Mb of robustly assembled sequence. Comparative analysis with the free-living, model nematode Caenorhabditis elegans revealed that, despite these genes having maintained little conservation of local synteny during approximately 350 million years of evolution, they largely remain in linkage on chromosomal units. More than 100 conserved operons were identified. Analysis of the predicted proteome provides evidence for adaptations of B. malayi to niches in its human and vector hosts and insights into the molecular basis of a mutualistic relationship with its Wolbachia endosymbiont. These findings offer a foundation for rational drug design.
PMCID:2613796
PMID: 17885136
ISSN: 0036-8075
CID: 1442542