Try a new search

Format these results:

Searched for:

person:ricem01

in-biosketch:yes

Total Results:

88


Closing in on what motivates motivation [Comment]

Rice, Margaret E
PMID: 31160742
ISSN: 1476-4687
CID: 4150872

Interactions between insulin and diet on striatal dopamine uptake kinetics in rodent brain slices

Patel, Jyoti C; Stouffer, Melissa A; Mancini, Maria; Nicholson, Charles; Carr, Kenneth D; Rice, Margaret E
Diet influences dopamine transmission in motor- and reward-related basal ganglia circuitry. In part, this reflects diet-dependent regulation of circulating and brain insulin levels. Activation of striatal insulin receptors amplifies axonal dopamine release in brain slices, and regulates food preference in vivo. The effect of insulin on dopamine release is indirect, and requires striatal cholinergic interneurons that express insulin receptors. However, insulin also increases dopamine uptake by promoting dopamine transporter (DAT) surface expression, which counteracts enhanced dopamine release. Here we determined the functional consequences of acute insulin exposure and chronic diet-induced changes in insulin on DAT activity after evoked dopamine release in striatal slices from adult ad-libitum fed (AL) rats and mice, and food-restricted (FR) or high-fat/high-sugar obesogenic (OB) diet rats. Uptake kinetics were assessed by fitting evoked dopamine transients to the Michaelis-Menten equation and extracting Cpeak and Vmax . Insulin (30 nM) increased both parameters in the caudate putamen and nucleus accumbens core of AL rats in an insulin receptor- and PI3-kinase-dependent manner. A pure effect of insulin on uptake was unmasked using mice lacking striatal acetylcholine, in which increased Vmax caused a decrease in Cpeak . Diet also influenced Vmax , which was lower in FR versus AL. The effects of insulin on Cpeak and Vmax were amplified by FR but blunted by OB, consistent with opposite consequences of these diets on insulin levels and insulin receptor sensitivity. Overall, these data reveal acute and chronic effects of insulin and diet on dopamine release and uptake that will influence brain reward pathways.
PMID: 29791756
ISSN: 1460-9568
CID: 3129832

Characterization of Optically and Electrically Evoked Dopamine Release in Striatal Slices from Digenic Knock-in Mice with DAT-Driven Expression of Channelrhodopsin

O'Neill, Brian; Patel, Jyoti C; Rice, Margaret E
Fast-scan cyclic voltammetry (FCV) is an established method to monitor increases in extracellular dopamine (DA) concentration ([DA]o) in the striatum, which is densely innervated by DA axons. Ex vivo brain slice preparations provide an opportunity to identify endogenous modulators of DA release. For these experiments, local electrical stimulation is often used to elicit release of DA, as well as other transmitters, in the striatal microcircuitry; changes in evoked increases in [DA]o after application of a pharmacological agent (e.g., a receptor antagonist) indicate a regulatory role for the transmitter system interrogated. Optogenetic methods that allow specific stimulation of DA axons provide a complementary, bottom-up approach for elucidating factors that regulate DA release. To this end, we have characterized DA release evoked by local electrical and optical stimulation in striatal slices from mice that genetically express a variant of channelrhodopsin-2 (ChR2). Evoked increases in [DA]o in the dorsal and ventral striatum (dStr and vStr) were examined in a cross of a Cre-dependent ChR2 line ("Ai32" mice) with a DAT::Cre mouse line. In dStr, repeated optical pulse-train stimulation at the same recording site resulted in rundown of evoked [DA]o using heterozygous mice, which contrasted with the stability seen with electrical stimulation. Similar rundown was seen in the presence of a nicotinic acetylcholine receptor (nAChR) antagonist, implicating the absence of concurrent nAChR activation in DA release instability in slices. Rundown with optical stimulation in dStr could be circumvented by recording from a population of sites, each stimulated only once. Same-site rundown was less pronounced with single-pulse stimulation, and a stable baseline could be attained. In vStr, stable optically evoked increases in [DA]o at single sites could be achieved using heterozygous mice, although with relatively low peak [DA]o. Low release could be overcome by using mice with a second copy of the Ai32 allele, which doubled ChR2 expression. The characteristics reported here should help future practitioners decide which Ai32;DAT::Cre genotype and recording protocol is optimal for the striatal subregion to be examined.
PMCID:5314427
PMID: 28177213
ISSN: 1948-7193
CID: 2437062

Insulin enhances striatal dopamine release by activating cholinergic interneurons and thereby signals reward

Stouffer, Melissa A; Woods, Catherine A; Patel, Jyoti C; Lee, Christian R; Witkovsky, Paul; Bao, Li; Machold, Robert P; Jones, Kymry T; de Vaca, Soledad Cabeza; Reith, Maarten E A; Carr, Kenneth D; Rice, Margaret E
Insulin activates insulin receptors (InsRs) in the hypothalamus to signal satiety after a meal. However, the rising incidence of obesity, which results in chronically elevated insulin levels, implies that insulin may also act in brain centres that regulate motivation and reward. We report here that insulin can amplify action potential-dependent dopamine (DA) release in the nucleus accumbens (NAc) and caudate-putamen through an indirect mechanism that involves striatal cholinergic interneurons that express InsRs. Furthermore, two different chronic diet manipulations in rats, food restriction (FR) and an obesogenic (OB) diet, oppositely alter the sensitivity of striatal DA release to insulin, with enhanced responsiveness in FR, but loss of responsiveness in OB. Behavioural studies show that intact insulin levels in the NAc shell are necessary for acquisition of preference for the flavour of a paired glucose solution. Together, these data imply that striatal insulin signalling enhances DA release to influence food choices.
PMCID:4624275
PMID: 26503322
ISSN: 2041-1723
CID: 1816772

Striatal dopamine neurotransmission: regulation of release and uptake

Sulzer, David; Cragg, Stephanie J; Rice, Margaret E
Dopamine (DA) transmission is governed by processes that regulate release from axonal boutons in the forebrain and the somatodendritic compartment in midbrain, and by clearance by the DA transporter, diffusion, and extracellular metabolism. We review how axonal DA release is regulated by neuronal activity and by autoreceptors and heteroreceptors, and address how quantal release events are regulated in size and frequency. In brain regions densely innervated by DA axons, DA clearance is due predominantly to uptake by the DA transporter, whereas in cortex, midbrain, and other regions with relatively sparse DA inputs, the norepinephrine transporter and diffusion are involved. We discuss the role of DA uptake in restricting the sphere of influence of DA and in temporal accumulation of extracellular DA levels upon successive action potentials. The tonic discharge activity of DA neurons may be translated into a tonic extracellular DA level, whereas their bursting activity can generate discrete extracellular DA transients.
PMCID:4850498
PMID: 27141430
ISSN: 2210-5336
CID: 2101182

Synaptotagmins 1 and 7 Play Complementary Roles in Somatodendritic Dopamine Release

Hikima, Takuya; Witkovsky, Paul; Khatri, Latika; Chao, Moses V; Rice, Margaret E
The molecular mechanisms underlying somatodendritic dopamine (DA) release remain unresolved, despite the passing of decades since its discovery. Our previous work showed robust release of somatodendritic DA in submillimolar extracellular Ca2+ concentration ([Ca2+]o). Here we tested the hypothesis that the high-affinity Ca2+ sensor synaptotagmin 7 (Syt7), is a key determinant of somatodendritic DA release and its Ca2+ dependence. Somatodendritic DA release from SNc DA neurons was assessed using whole-cell recording in midbrain slices from male and female mice to monitor evoked DA-dependent D2 receptor-mediated inhibitory currents (D2ICs). Single-cell application of an antibody to Syt7 (Syt7 Ab) decreased pulse train-evoked D2ICs, revealing a functional role for Syt7. The assessment of the Ca2+ dependence of pulse train-evoked D2ICs confirmed robust DA release in submillimolar [Ca2+]o in wild-type (WT) neurons, but loss of this sensitivity with intracellular Syt7 Ab or in Syt7 knock-out (KO) mice. In millimolar [Ca2+]o, pulse train-evoked D2ICs in Syt7 KOs showed a greater reduction in decreased [Ca2+]o than seen in WT mice; the effect on single pulse-evoked DA release, however, did not differ between genotypes. Single-cell application of a Syt1 Ab had no effect on train-evoked D2ICs in WT SNc DA neurons, but did cause a decrease in D2IC amplitude in Syt7 KOs, indicating a functional substitution of Syt1 for Syt7. In addition, Syt1 Ab decreased single pulse-evoked D2ICs in WT cells, indicating the involvement of Syt1 in tonic DA release. Thus, Syt7 and Syt1 play complementary roles in somatodendritic DA release from SNc DA neurons.SIGNIFICANCE STATEMENT The respective Ca2+ dependence of somatodendritic and axonal dopamine (DA) release differs, resulting in the persistence of somatodendritic DA release in submillimolar Ca2+ concentrations too low to support axonal release. We demonstrate that synaptotagmin7 (Syt7), a high-affinity Ca2+ sensor, underlies phasic somatodendritic DA release and its Ca2+ sensitivity in the substantia nigra pars compacta. In contrast, we found that synaptotagmin 1 (Syt1), the Ca2+ sensor underlying axonal DA release, plays a role in tonic, but not phasic, somatodendritic DA release in wild-type mice. However, Syt1 can facilitate phasic DA release after Syt7 deletion. Thus, we show that both Syt1 and Syt7 act as Ca2+ sensors subserving different aspects of somatodendritic DA release processes.
PMCID:9097777
PMID: 35361702
ISSN: 1529-2401
CID: 5220042

Cell-type-specific disruption of PERK-eIF2α signaling in dopaminergic neurons alters motor and cognitive function

Longo, Francesco; Mancini, Maria; Ibraheem, Pierre L; Aryal, Sameer; Mesini, Caterina; Patel, Jyoti C; Penhos, Elena; Rahman, Nazia; Mamcarz, Maggie; Santini, Emanuela; Rice, Margaret E; Klann, Eric
Endoplasmic reticulum (ER) stress and the unfolded protein response (UPR) has been shown to activate the eIF2α kinase PERK to directly regulate translation initiation. Tight control of PERK-eIF2α signaling has been shown to be necessary for normal long-lasting synaptic plasticity and cognitive function, including memory. In contrast, chronic activation of PERK-eIF2α signaling has been shown to contribute to pathophysiology, including memory impairments, associated with multiple neurological diseases, making this pathway an attractive therapeutic target. Herein, using multiple genetic approaches we show that selective deletion of the PERK in mouse midbrain dopaminergic (DA) neurons results in multiple cognitive and motor phenotypes. Conditional expression of phospho-mutant eIF2α in DA neurons recapitulated the phenotypes caused by deletion of PERK, consistent with a causal role of decreased eIF2α phosphorylation for these phenotypes. In addition, deletion of PERK in DA neurons resulted in altered de novo translation, as well as changes in axonal DA release and uptake in the striatum that mirror the pattern of motor changes observed. Taken together, our findings show that proper regulation of PERK-eIF2α signaling in DA neurons is required for normal cognitive and motor function in a non-pathological state, and also provide new insight concerning the onset of neuropsychiatric disorders that accompany UPR failure.
PMID: 33879865
ISSN: 1476-5578
CID: 4847122

Activity-dependent somatodendritic dopamine release in the substantia nigra autoinhibits the releasing neuron

Hikima, Takuya; Lee, Christian R; Witkovsky, Paul; Chesler, Julia; Ichtchenko, Konstantin; Rice, Margaret E
Somatodendritic dopamine (DA) release from midbrain DA neurons activates D2 autoreceptors on these cells to regulate their activity. However, the source of autoregulatory DA remains controversial. Here, we test the hypothesis that D2 autoreceptors on a given DA neuron in the substantia nigra pars compacta (SNc) are activated primarily by DA released from that same cell, rather than from its neighbors. Voltage-clamp recording allows monitoring of evoked D2-receptor-mediated inhibitory currents (D2ICs) in SNc DA neurons as an index of DA release. Single-cell application of antibodies to Na+ channels via the recording pipette decreases spontaneous activity of recorded neurons and attenuates evoked D2ICs; antibodies to SNAP-25, a soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) protein, also decrease D2IC amplitude. Evoked D2ICs are nearly abolished by the light chain of botulinum neurotoxin A, which cleaves SNAP-25, whereas synaptically activated GABAB-receptor-mediated currents are unaffected. Thus, somatodendritic DA release in the SNc autoinhibits the neuron that releases it.
PMID: 33826884
ISSN: 2211-1247
CID: 4839342

Interactions between Soluble Species of β-Amyloid and α-Synuclein Promote Oligomerization while Inhibiting Fibrillization

Candreva, Jason; Chau, Edward; Rice, Margaret E; Kim, Jin Ryoun
Aggregations of β-amyloid (Aβ) and α-synuclein (αS) into oligomeric and fibrillar assemblies are the pathological hallmarks of Alzheimer's and Parkinson's diseases, respectively. Although Aβ and αS affect different regions of the brain and are separated at the cellular level, there is evidence of their eventual interaction in the pathology of both disorders. Characterization of interactions of Aβ and αS at various stages of their aggregation pathways could reveal mechanisms and therapeutic targets for the prevention and cure of these neurodegenerative diseases. In this study, we comprehensively examined the interactions and their molecular manifestations using an array of characterization tools. We show for the first time that αS monomers and oligomers, but not αS fibrils, inhibit Aβ fibrillization while promoting oligomerization of Aβ monomers and stabilizing preformed Aβ oligomers via coassembly, as judged by Thioflavin T fluorescence, transmission electron microscopy, and SDS- and native-PAGE with fluorescently labeled peptides/proteins. In contrast, soluble Aβ species, such as monomers and oligomers, aggregate into fibrils, when incubated alone under the otherwise same condition. Our study provides evidence that the interactions with αS soluble species, responsible for the effects, are mediated primarily by the C-terminus of Aβ, when judged by competitive immunoassays using antibodies recognizing various fragments of Aβ. We also show that the C-terminus of Aβ is a primary site for its interaction with αS fibrils. Collectively, these data demonstrate aggregation state-specific interactions between αS and Aβ and offer insight into a molecular basis of synergistic biological effects between the two polypeptides.
PMID: 31854188
ISSN: 1520-4995
CID: 4303602

A novel transgenic mouse model to investigate the cell-autonomous effects of torsinA(ΔE) expression in striatal output neurons

Gonzalez-Alegre, Pedro; Beauvais, Genevieve; Martin, Janine; Koch, Rick J; Walker, Ruth H; Patel, Jyoti C; Rice, Margaret E; Ehrlich, Michelle E
Dystonia is a disabling neurological syndrome characterized by abnormal movements and postures that result from intermittent or sustained involuntary muscle contractions; mutations of DYT1/TOR1A are the most common cause of childhood-onset, generalized, inherited dystonia. Patient and mouse model data strongly support dysregulation of the nigrostriatal dopamine neurotransmission circuit in the presence of the DYT1-causing mutation. To determine striatal medium spiny neuron (MSN) cell-autonomous and non-cell autonomous effects relevant to dopamine transmission, we created a transgenic mouse in which expression of mutant torsinA in forebrain is restricted to MSNs. We assayed electrically evoked and cocaine-enhanced dopamine release and locomotor activity, dopamine uptake, gene expression of dopamine-associated neuropeptides and receptors, and response to the muscarinic cholinergic antagonist, trihexyphenidyl. We found that over-expression of mutant torsinA in MSNs produces complex cell-autonomous and non-cell autonomous alterations in nigrostriatal dopaminergic and intrastriatal cholinergic function, similar to that found in pan-cellular DYT1 mouse models. These data introduce targets for future studies to identify which are causative and which are compensatory in DYT1 dystonia, and thereby aid in defining appropriate therapies.
PMID: 31669362
ISSN: 1873-7544
CID: 4163382