Try a new search

Format these results:

Searched for:

person:richas25

in-biosketch:true

Total Results:

45


Nudging Health Care Providers' Adoption of Clinical Decision Support: Protocol for the User-Centered Development of a Behavioral Economics-Inspired Electronic Health Record Tool

Richardson, Safiya; Dauber-Decker, Katherine; Solomon, Jeffrey; Khan, Sundas; Barnaby, Douglas; Chelico, John; Qiu, Michael; Liu, Yan; Mann, Devin; Pekmezaris, Renee; McGinn, Thomas; Diefenbach, Michael
BACKGROUND:The improvements in care resulting from clinical decision support (CDS) have been significantly limited by consistently low health care provider adoption. Health care provider attitudes toward CDS, specifically psychological and behavioral barriers, are not typically addressed during any stage of CDS development, although they represent an important barrier to adoption. Emerging evidence has shown the surprising power of using insights from the field of behavioral economics to address psychological and behavioral barriers. Nudges are formal applications of behavioral economics, defined as positive reinforcement and indirect suggestions that have a nonforced effect on decision-making. OBJECTIVE:Our goal is to employ a user-centered design process to develop a CDS tool-the pulmonary embolism (PE) risk calculator-for PE risk stratification in the emergency department that incorporates a behavior theory-informed nudge to address identified behavioral barriers to use. METHODS:All study activities took place at a large academic health system in the New York City metropolitan area. Our study used a user-centered and behavior theory-based approach to achieve the following two aims: (1) use mixed methods to identify health care provider barriers to the use of an active CDS tool for PE risk stratification and (2) develop a new CDS tool-the PE risk calculator-that addresses behavioral barriers to health care providers' adoption of CDS by incorporating nudges into the user interface. These aims were guided by the revised Observational Research Behavioral Information Technology model. A total of 50 clinicians who used the original version of the tool were surveyed with a quantitative instrument that we developed based on a behavior theory framework-the Capability-Opportunity-Motivation-Behavior framework. A semistructured interview guide was developed based on the survey responses. Inductive methods were used to analyze interview session notes and audio recordings from 12 interviews. Revised versions of the tool were developed that incorporated nudges. RESULTS:Functional prototypes were developed by using Axure PRO (Axure Software Solutions) software and usability tested with end users in an iterative agile process (n=10). The tool was redesigned to address 4 identified major barriers to tool use; we included 2 nudges and a default. The 6-month pilot trial for the tool was launched on October 1, 2021. CONCLUSIONS:Clinicians highlighted several important psychological and behavioral barriers to CDS use. Addressing these barriers, along with conducting traditional usability testing, facilitated the development of a tool with greater potential to transform clinical care. The tool will be tested in a prospective pilot trial. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID)/UNASSIGNED:DERR1-10.2196/42653.
PMCID:9892982
PMID: 36652293
ISSN: 1929-0748
CID: 5430822

How Should Clinicians' Performance Be Assessed When Health Care Organizations Implement Behavioral Architecture That Generates Negative Consequences?

Richardson, Safiya
Behavioral interventions have been shown to have powerful effects on human behavior both outside of and within the context of health care. As organizations increasingly adopt behavioral architecture, care must be taken to consider its potential negative consequences. An evidenced-based approach is best, whereby interventions that might have a significant deleterious effect on patients' health outcomes are first tested and rigorously evaluated before being systematically rolled out. In the case of clinical decision support, brief and thorough instructions should be provided for use. Physician performance when using these systems is best measured relatively, in the context of peers with similar training. Responsibility for errors must be shared with clinical team members and system designers.
PMCID:7605411
PMID: 33009771
ISSN: 2376-6980
CID: 4996202

A framework for digital health equity

Richardson, Safiya; Lawrence, Katharine; Schoenthaler, Antoinette M; Mann, Devin
We present a comprehensive Framework for Digital Health Equity, detailing key digital determinants of health (DDoH), to support the work of digital health tool creators in industry, health systems operations, and academia. The rapid digitization of healthcare may widen health disparities if solutions are not developed with these determinants in mind. Our framework builds on the leading health disparities framework, incorporating a digital environment domain. We examine DDoHs at the individual, interpersonal, community, and societal levels, discuss the importance of a root cause, multi-level approach, and offer a pragmatic case study that applies our framework.
PMCID:9387425
PMID: 35982146
ISSN: 2398-6352
CID: 5300232

Higher Imaging Yield When Clinical Decision Support Is Used

Richardson, Safiya; Cohen, Stuart; Khan, Sundas; Zhang, Meng; Qiu, Guang; Oppenheim, Michael I; McGinn, Thomas
OBJECTIVE:Increased utilization of CT pulmonary angiography (CTPA) for the evaluation of pulmonary embolism has been associated with decreasing diagnostic yields and rising concerns about the harms of unnecessary testing. The objective of this study was to determine whether clinical decision support (CDS) use would be associated with increased imaging yields after controlling for selection bias. METHODS:We performed a retrospective cohort study in the emergency departments of two tertiary care hospitals of all CTPAs performed between August 2015 and September 2018. Providers ordering a CTPA are routed to an optional CDS tool, which allows them to use Wells' Criteria for pulmonary embolism. After propensity score matching, CTPA yield was calculated for the CDS-use and CDS-dismissal groups and stratified by provider type. RESULTS:A total of 7,367 CTPAs were ordered during the study period. Of those, providers used the CDS tool in 2,568 (35%) cases and did not use the tool in 4,799 (65%) of cases. After propensity score matching, CTPA yield was 11.99% in the CDS-use group and 8.70% in the CDS-dismissal group (P < .001). Attending physicians, residents, and physician assistant CDS users demonstrated a 56.5% (P = .006), 38.7% (P = .01), and 16.7% (P = .03) increased yield compared with those who dismissed the tool, respectively. DISCUSSION/CONCLUSIONS:Diagnostic yield was 38% higher for CTPAs when the provider used the CDS tool, after controlling for selection bias. Yields were higher for every provider type. Further research is needed to discover successful strategies to increase provider use of these important tools.
PMCID:7136128
PMID: 31899178
ISSN: 1558-349x
CID: 4996172

Presenting Characteristics, Comorbidities, and Outcomes Among 5700 Patients Hospitalized With COVID-19 in the New York City Area

Richardson, Safiya; Hirsch, Jamie S; Narasimhan, Mangala; Crawford, James M; McGinn, Thomas; Davidson, Karina W; Barnaby, Douglas P; Becker, Lance B; Chelico, John D; Cohen, Stuart L; Cookingham, Jennifer; Coppa, Kevin; Diefenbach, Michael A; Dominello, Andrew J; Duer-Hefele, Joan; Falzon, Louise; Gitlin, Jordan; Hajizadeh, Negin; Harvin, Tiffany G; Hirschwerk, David A; Kim, Eun Ji; Kozel, Zachary M; Marrast, Lyndonna M; Mogavero, Jazmin N; Osorio, Gabrielle A; Qiu, Michael; Zanos, Theodoros P
Importance/UNASSIGNED:There is limited information describing the presenting characteristics and outcomes of US patients requiring hospitalization for coronavirus disease 2019 (COVID-19). Objective/UNASSIGNED:To describe the clinical characteristics and outcomes of patients with COVID-19 hospitalized in a US health care system. Design, Setting, and Participants/UNASSIGNED:Case series of patients with COVID-19 admitted to 12 hospitals in New York City, Long Island, and Westchester County, New York, within the Northwell Health system. The study included all sequentially hospitalized patients between March 1, 2020, and April 4, 2020, inclusive of these dates. Exposures/UNASSIGNED:Confirmed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection by positive result on polymerase chain reaction testing of a nasopharyngeal sample among patients requiring admission. Main Outcomes and Measures/UNASSIGNED:Clinical outcomes during hospitalization, such as invasive mechanical ventilation, kidney replacement therapy, and death. Demographics, baseline comorbidities, presenting vital signs, and test results were also collected. Results/UNASSIGNED:A total of 5700 patients were included (median age, 63 years [interquartile range {IQR}, 52-75; range, 0-107 years]; 39.7% female). The most common comorbidities were hypertension (3026; 56.6%), obesity (1737; 41.7%), and diabetes (1808; 33.8%). At triage, 30.7% of patients were febrile, 17.3% had a respiratory rate greater than 24 breaths/minute, and 27.8% received supplemental oxygen. The rate of respiratory virus co-infection was 2.1%. Outcomes were assessed for 2634 patients who were discharged or had died at the study end point. During hospitalization, 373 patients (14.2%) (median age, 68 years [IQR, 56-78]; 33.5% female) were treated in the intensive care unit care, 320 (12.2%) received invasive mechanical ventilation, 81 (3.2%) were treated with kidney replacement therapy, and 553 (21%) died. Mortality for those requiring mechanical ventilation was 88.1%. The median postdischarge follow-up time was 4.4 days (IQR, 2.2-9.3). A total of 45 patients (2.2%) were readmitted during the study period. The median time to readmission was 3 days (IQR, 1.0-4.5) for readmitted patients. Among the 3066 patients who remained hospitalized at the final study follow-up date (median age, 65 years [IQR, 54-75]), the median follow-up at time of censoring was 4.5 days (IQR, 2.4-8.1). Conclusions and Relevance/UNASSIGNED:This case series provides characteristics and early outcomes of sequentially hospitalized patients with confirmed COVID-19 in the New York City area.
PMID: 32320003
ISSN: 1538-3598
CID: 4397182

Effect of a behavioral nudge on adoption of an electronic health record-agnostic pulmonary embolism risk prediction tool: a pilot cluster nonrandomized controlled trial

Richardson, Safiya; Dauber-Decker, Katherine L; Solomon, Jeffrey; Seelamneni, Pradeep; Khan, Sundas; Barnaby, Douglas P; Chelico, John; Qiu, Michael; Liu, Yan; Sanghani, Shreya; Izard, Stephanie M; Chiuzan, Codruta; Mann, Devin; Pekmezaris, Renee; McGinn, Thomas; Diefenbach, Michael A
OBJECTIVE/UNASSIGNED:Our objective was to determine the feasibility and preliminary efficacy of a behavioral nudge on adoption of a clinical decision support (CDS) tool. MATERIALS AND METHODS/UNASSIGNED:We conducted a pilot cluster nonrandomized controlled trial in 2 Emergency Departments (EDs) at a large academic healthcare system in the New York metropolitan area. We tested 2 versions of a CDS tool for pulmonary embolism (PE) risk assessment developed on a web-based electronic health record-agnostic platform. One version included behavioral nudges incorporated into the user interface. RESULTS/UNASSIGNED: < .001). DISCUSSION/UNASSIGNED:We demonstrated feasibility and preliminary efficacy of a PE risk prediction CDS tool developed using insights from behavioral science. The tool is well-positioned to be tested in a large randomized clinical trial. TRIAL REGISTRATION/UNASSIGNED:Clinicaltrials.gov (NCT05203185).
PMCID:11293639
PMID: 39091509
ISSN: 2574-2531
CID: 5731572

Navigating Remote Blood Pressure Monitoring-The Devil Is in the Details

Schoenthaler, Antoinette M; Richardson, Safiya; Mann, Devin
PMID: 38829621
ISSN: 2574-3805
CID: 5665042

Ambulatory antibiotic prescription rates for acute respiratory infection rebound two years after the start of the COVID-19 pandemic

Stevens, Elizabeth R; Feldstein, David; Jones, Simon; Twan, Chelsea; Cui, Xingwei; Hess, Rachel; Kim, Eun Ji; Richardson, Safiya; Malik, Fatima M; Tasneem, Sumaiya; Henning, Natalie; Xu, Lynn; Mann, Devin M
BACKGROUND:During the COVID-19 pandemic, acute respiratory infection (ARI) antibiotic prescribing in ambulatory care markedly decreased. It is unclear if antibiotic prescription rates will remain lowered. METHODS:We used trend analyses of antibiotics prescribed during and after the first wave of COVID-19 to determine whether ARI antibiotic prescribing rates in ambulatory care have remained suppressed compared to pre-COVID-19 levels. Retrospective data was used from patients with ARI or UTI diagnosis code(s) for their encounter from 298 primary care and 66 urgent care practices within four academic health systems in New York, Wisconsin, and Utah between January 2017 and June 2022. The primary measures included antibiotic prescriptions per 100 non-COVID ARI encounters, encounter volume, prescribing trends, and change from expected trend. RESULTS:At baseline, during and after the first wave, the overall ARI antibiotic prescribing rates were 54.7, 38.5, and 54.7 prescriptions per 100 encounters, respectively. ARI antibiotic prescription rates saw a statistically significant decline after COVID-19 onset (step change -15.2, 95% CI: -19.6 to -4.8). During the first wave, encounter volume decreased 29.4% and, after the first wave, remained decreased by 188%. After the first wave, ARI antibiotic prescription rates were no longer significantly suppressed from baseline (step change 0.01, 95% CI: -6.3 to 6.2). There was no significant difference between UTI antibiotic prescription rates at baseline versus the end of the observation period. CONCLUSIONS:The decline in ARI antibiotic prescribing observed after the onset of COVID-19 was temporary, not mirrored in UTI antibiotic prescribing, and does not represent a long-term change in clinician prescribing behaviors. During a period of heightened awareness of a viral cause of ARI, a substantial and clinically meaningful decrease in clinician antibiotic prescribing was observed. Future efforts in antibiotic stewardship may benefit from continued study of factors leading to this reduction and rebound in prescribing rates.
PMCID:11198751
PMID: 38917147
ISSN: 1932-6203
CID: 5675032

Reducing prescribing of antibiotics for acute respiratory infections using a frontline nurse-led EHR-Integrated clinical decision support tool: protocol for a stepped wedge randomized control trial

Stevens, Elizabeth R; Agbakoba, Ruth; Mann, Devin M; Hess, Rachel; Richardson, Safiya I; McGinn, Thomas; Smith, Paul D; Halm, Wendy; Mundt, Marlon P; Dauber-Decker, Katherine L; Jones, Simon A; Feldthouse, Dawn M; Kim, Eun Ji; Feldstein, David A
BACKGROUND:Overprescribing of antibiotics for acute respiratory infections (ARIs) remains a major issue in outpatient settings. Use of clinical prediction rules (CPRs) can reduce inappropriate antibiotic prescribing but they remain underutilized by physicians and advanced practice providers. A registered nurse (RN)-led model of an electronic health record-integrated CPR (iCPR) for low-acuity ARIs may be an effective alternative to address the barriers to a physician-driven model. METHODS:Following qualitative usability testing, we will conduct a stepped-wedge practice-level cluster randomized controlled trial (RCT) examining the effect of iCPR-guided RN care for low acuity patients with ARI. The primary hypothesis to be tested is: Implementation of RN-led iCPR tools will reduce antibiotic prescribing across diverse primary care settings. Specifically, this study aims to: (1) determine the impact of iCPRs on rapid strep test and chest x-ray ordering and antibiotic prescribing rates when used by RNs; (2) examine resource use patterns and cost-effectiveness of RN visits across diverse clinical settings; (3) determine the impact of iCPR-guided care on patient satisfaction; and (4) ascertain the effect of the intervention on RN and physician burnout. DISCUSSION:This study represents an innovative approach to using an iCPR model led by RNs and specifically designed to address inappropriate antibiotic prescribing. This study has the potential to provide guidance on the effectiveness of delegating care of low-acuity patients with ARIs to RNs to increase use of iCPRs and reduce antibiotic overprescribing for ARIs in outpatient settings. TRIAL REGISTRATION:ClinicalTrials.gov Identifier: NCT04255303, Registered February 5 2020, https://clinicaltrials.gov/ct2/show/NCT04255303 .
PMCID:10644670
PMID: 37964232
ISSN: 1472-6947
CID: 5631732

Considerations for using predictive models that include race as an input variable: The case study of lung cancer screening

Stevens, Elizabeth R; Caverly, Tanner; Butler, Jorie M; Kukhareva, Polina; Richardson, Safiya; Mann, Devin M; Kawamoto, Kensaku
Indiscriminate use of predictive models incorporating race can reinforce biases present in source data and lead to an exacerbation of health disparities. In some countries, such as the United States, there is therefore a push to remove race from prediction models; however, there are still many prediction models that use race as an input. Biomedical informaticists who are given the responsibility of using these predictive models in healthcare environments are likely to be faced with questions like how to deal with race covariates in these models. Thus, there is a need for a pragmatic framework to help model users think through how to include race in their chosen model so as to avoid inadvertently exacerbating disparities. In this paper, we use the case study of lung cancer screening to propose a simple framework to guide how model users can approach the use (or non-use) of race inputs in the predictive models they are tasked with leveraging in electronic health records and clinical workflows.
PMID: 37844677
ISSN: 1532-0480
CID: 5609662