Try a new search

Format these results:

Searched for:

person:rinbed01

in-biosketch:yes

Total Results:

67


Illuminating Neural Computation Using Precision Optogenetics-Controlled Synthetic Perception

Gill, J V; Lerman, G M; Chong, E; Rinberg, D; Shoham, S
Connecting neuronal activity to perception requires tools that can probe neural codes at cellular and circuit levels, paired with sensitive behavioral measures. In this chapter, we present an overview of current methods for connecting neural codes to perception using precision optogenetics and psychophysical measurements of synthetically induced percepts. We also highlight new methodologies for validating precise control of optical and behavioral manipulations. Finally, we provide a perspective on upcoming developments that are poised to advance the field.
Copyright
EMBASE:640500153
ISSN: 1940-6045
CID: 5512082

A behavioral paradigm for measuring perceptual distances in mice

Nakayama, Hirofumi; Gerkin, Richard C; Rinberg, Dmitry
Perceptual similarities between a specific stimulus and other stimuli of the same modality provide valuable information about the structure and geometry of sensory spaces. While typically assessed in human behavioral experiments, perceptual similarities-or distances-are rarely measured in other species. However, understanding the neural computations responsible for sensory representations requires the monitoring and often manipulation of neural activity, which is more readily achieved in non-human experimental models. Here, we develop a behavioral paradigm that enables the quantification of perceptual similarity between sensory stimuli using mouse olfaction as a model system.
PMCID:9243525
PMID: 35784646
ISSN: 2667-2375
CID: 5280172

Sensitive and robust chemical detection using an olfactory brain-computer interface

Shor, Erez; Herrero-Vidal, Pedro; Dewan, Adam; Uguz, Ilke; Curto, Vincenzo F; Malliaras, George G; Savin, Cristina; Bozza, Thomas; Rinberg, Dmitry
When it comes to detecting volatile chemicals, biological olfactory systems far outperform all artificial chemical detection devices in their versatility, speed, and specificity. Consequently, the use of trained animals for chemical detection in security, defense, healthcare, agriculture, and other applications has grown astronomically. However, the use of animals in this capacity requires extensive training and behavior-based communication. Here we propose an alternative strategy, a bio-electronic nose, that capitalizes on the superior capability of the mammalian olfactory system, but bypasses behavioral output by reading olfactory information directly from the brain. We engineered a brain-computer interface that captures neuronal signals from an early stage of olfactory processing in awake mice combined with machine learning techniques to form a sensitive and selective chemical detector. We chronically implanted a grid electrode array on the surface of the mouse olfactory bulb and systematically recorded responses to a large battery of odorants and odorant mixtures across a wide range of concentrations. The bio-electronic nose has a comparable sensitivity to the trained animal and can detect odors on a variable background. We also introduce a novel genetic engineering approach that modifies the relative abundance of particular olfactory receptors in order to improve the sensitivity of our bio-electronic nose for specific chemical targets. Our recordings were stable over months, providing evidence for robust and stable decoding over time. The system also works in freely moving animals, allowing chemical detection to occur in real-world environments. Our bio-electronic nose outperforms current methods in terms of its stability, specificity, and versatility, setting a new standard for chemical detection.
PMID: 34624799
ISSN: 1873-4235
CID: 5037662

Olfaction: Source separation in a single sniff

Harvey, Joshua; Rinberg, Dmitry
A new study finds that mammalian olfaction may be far faster than previously thought. Mice can discriminate between olfactory stimuli that differ in fine temporal structure, at frequencies of up to 40 Hz. But how might mammals achieve high-bandwidth olfaction, and why?
PMID: 34520717
ISSN: 1879-0445
CID: 5061352

Across-animal odor decoding by probabilistic manifold alignment

Chapter by: Herrero-Vidal, Pedro; Rinberg, Dmitry; Savin, Cristina
in: Advances in Neural Information Processing Systems by
[S.l.] : Neural information processing systems foundation, 2021
pp. 20360-20372
ISBN: 9781713845393
CID: 5315252

Precise Holographic Manipulation of Olfactory Circuits Reveals Coding Features Determining Perceptual Detection

Gill, Jonathan V; Lerman, Gilad M; Zhao, Hetince; Stetler, Benjamin J; Rinberg, Dmitry; Shoham, Shy
Sensory systems transform the external world into time-varying spike trains. What features of spiking activity are used to guide behavior? In the mouse olfactory bulb, inhalation of different odors leads to changes in the set of neurons activated, as well as when neurons are activated relative to each other (synchrony) and the onset of inhalation (latency). To explore the relevance of each mode of information transmission, we probed the sensitivity of mice to perturbations across each stimulus dimension (i.e., rate, synchrony, and latency) using holographic two-photon optogenetic stimulation of olfactory bulb neurons with cellular and single-action-potential resolution. We found that mice can detect single action potentials evoked synchronously across <20 olfactory bulb neurons. Further, we discovered that detection depends strongly on the synchrony of activation across neurons, but not the latency relative to inhalation.
PMID: 32841590
ISSN: 1097-4199
CID: 4606572

Manipulating synthetic optogenetic odors reveals the coding logic of olfactory perception

Chong, Edmund; Moroni, Monica; Wilson, Christopher; Shoham, Shy; Panzeri, Stefano; Rinberg, Dmitry
How does neural activity generate perception? Finding the combinations of spatial or temporal activity features (such as neuron identity or latency) that are consequential for perception remains challenging. We trained mice to recognize synthetic odors constructed from parametrically defined patterns of optogenetic activation, then measured perceptual changes during extensive and controlled perturbations across spatiotemporal dimensions. We modeled recognition as the matching of patterns to learned templates. The templates that best predicted recognition were sequences of spatially identified units, ordered by latencies relative to each other (with minimal effects of sniff). Within templates, individual units contributed additively, with larger contributions from earlier-activated units. Our synthetic approach reveals the fundamental logic of the olfactory code and provides a general framework for testing links between sensory activity and perception.
PMID: 32554567
ISSN: 1095-9203
CID: 4486312

Information processing by an olfactory functional unit and a primacy coding hypothesis [Meeting Abstract]

Rinberg, D
Olfactory inputs are organized in an array of functional units (glomeruli), each relaying information from sensory neurons expressing a given odorant receptor to a small population of output neurons, mitral/tufted (MT) cells. MT cells respond heterogeneously to odorants, and how the responses encode stimulus features is unknown. We recorded in awake mice responses from "sister" MT cells that receive input from a functionally- characterized, genetically identifed glomerulus, corresponding to a specifc receptor (M72). Despite receiving similar inputs, sister MT cells exhibit temporally diverse, concentration dependent, excitatory and inhibitory responses to most M72 ligands. In contrast, the strongest known ligand for M72 elicits temporally stereotyped, early excitatory responses in sister MT cells, consistent across a range of concentrations. Our data suggest that information about ligand affnity is encoded in the collective stereotypy or diversity of activity among sister MT cells within a glomerular functional unit. These fndings provide an evidence for spe-cifc network mechanisms, which implement a primacy coding model for concentration invariant odor recognition
EMBASE:631449089
ISSN: 0379-864x
CID: 4384382

Discovering Precise Temporal Patterns in Large-Scale Neural Recordings through Robust and Interpretable Time Warping

Williams, Alex H; Poole, Ben; Maheswaranathan, Niru; Dhawale, Ashesh K; Fisher, Tucker; Wilson, Christopher D; Brann, David H; Trautmann, Eric M; Ryu, Stephen; Shusterman, Roman; Rinberg, Dmitry; Ölveczky, Bence P; Shenoy, Krishna V; Ganguli, Surya
Though the temporal precision of neural computation has been studied intensively, a data-driven determination of this precision remains a fundamental challenge. Reproducible spike patterns may be obscured on single trials by uncontrolled temporal variability in behavior and cognition and may not be time locked to measurable signatures in behavior or local field potentials (LFP). To overcome these challenges, we describe a general-purpose time warping framework that reveals precise spike-time patterns in an unsupervised manner, even when these patterns are decoupled from behavior or are temporally stretched across single trials. We demonstrate this method across diverse systems: cued reaching in nonhuman primates, motor sequence production in rats, and olfaction in mice. This approach flexibly uncovers diverse dynamical firing patterns, including pulsatile responses to behavioral events, LFP-aligned oscillatory spiking, and even unanticipated patterns, such as 7 Hz oscillations in rat motor cortex that are not time locked to measured behaviors or LFP.
PMID: 31786013
ISSN: 1097-4199
CID: 4292512

Precise optical probing of perceptual detection in olfactory circuits [Meeting Abstract]

Gill, J V; Lerman, G M; Zhao, H; Stetler, B J; Shoham, S; Rinberg, D
Animals are capable of detecting odorants in a single sniff, at extremely low concentrations. This ability is crucial for survival, yet it is unknown how the olfactory system supports detection at the perceptual limit. In the mouse olfactory bulb, inhalation of different odors leads to changes in the set of neurons activated, as well as when neurons are activated relative to each other (synchrony), and the onset of inhalation (latency). A key question is which features of stimulus evoked activity (e.g. rate, synchrony, or latency) are used to guide detection behavior? Here, we probed the sensitivity of mice to perturbations across each stimulus dimension using holographic two-photon (2P) optogenetic stimulation of olfactory bulb neurons, with cellular and single action potential resolution and millisecond precision. We found that mice can detect single action potentials evoked synchronously across <20 olfactory bulb neurons. Mice exhibited this sensitivity for artificial ensembles of mitral cells, as well as mixed ensembles of mitral and granule cells. Further, we discovered that detection depends strongly on the synchrony of activation across neurons, with detectability falling to near-chance levels with an imposed stimulus spread 3 30 ms, while detection performance was minimally perturbed by changes in the latency of activation relative to inhalation. These results reveal that mice are acutely attuned to single neurons and action potentials in olfactory circuits, and that synchrony across neurons may be a critical feature supporting the perceptibility of sparse ensemble activity signals
EMBASE:633611265
ISSN: 0379-864x
CID: 4710402