Try a new search

Format these results:

Searched for:



Total Results:


Neuromodulation: The Fevered Mind of the Worm

Ringstad, Niels
A landmark study has revealed that an interleukin-17-like signaling system modulates a neural circuit that controls the aggregation behavior of nematodes.
PMID: 28441568
ISSN: 1879-0445
CID: 2543802

Inhibitory peptidergic modulation of C. elegans serotonin neurons is gated by T-type calcium channels

Zang, Kara E; Ho, Elver; Ringstad, Niels
Serotonin is an evolutionarily ancient molecule that functions in generating and modulating many behavioral states. Although much is known about how serotonin acts on its cellular targets, how serotonin release is regulated in vivo remains poorly understood. In the nematode C. elegans, serotonin neurons that drive female reproductive behavior are directly modulated by inhibitory neuropeptides. Here, we report the isolation of mutants in which inhibitory neuropeptides fail to properly modulate serotonin neurons and the behavior they mediate. The corresponding mutations affect the T-type calcium channel CCA-1 and symmetrically re-tune its voltage-dependencies of activation and inactivation towards more hyperpolarized potentials. This shift in voltage dependency strongly and specifically bypasses the behavioral and cell physiological effects of peptidergic inhibition on serotonin neurons. Our results indicate that T-type calcium channels are critical regulators of a C. elegans serotonergic circuit and demonstrate a mechanism in which T-type channels functionally gate inhibitory modulation in vivo.
PMID: 28165324
ISSN: 2050-084x
CID: 2437042

A Controlled Burn: Sensing Oxygen to Tune Fat Metabolism

Ringstad, Niels
Animals must decide when to consume precious fat stores in order to sustain life. In this issue of Cell Reports, Witham et al. report how oxygen-sensing neurons ensure this decision is made under environmental conditions that favor metabolic efficiency.
PMID: 26910527
ISSN: 2211-1247
CID: 1964782

Toll-like Receptor Signaling Promotes Development and Function of Sensory Neurons Required for a C. elegans Pathogen-Avoidance Behavior

Brandt, Julia P; Ringstad, Niels
Toll-like receptors (TLRs) play critical roles in innate immunity in many animal species. The sole TLR of C. elegans-TOL-1-is required for a pathogen-avoidance behavior, yet how it promotes this behavior is unknown. We show that for pathogen avoidance TOL-1 signaling is required in the chemosensory BAG neurons, where it regulates gene expression and is necessary for their chemosensory function. Genetic studies revealed that TOL-1 acts together with many conserved components of TLR signaling. BAG neurons are activated by carbon dioxide (CO2), and we found that this modality is required for pathogen avoidance. TLR signaling can therefore mediate host responses to microbes through an unexpected mechanism: by promoting the development and function of chemosensory neurons that surveil the metabolic activity of environmental microbes.
PMID: 26279230
ISSN: 1879-0445
CID: 1732132

Nek2 activation of Kif24 ensures cilium disassembly during the cell cycle

Kim, Sehyun; Lee, Kwanwoo; Choi, Jung-Hwan; Ringstad, Niels; Dynlacht, Brian David
Many proteins are known to promote ciliogenesis, but mechanisms that promote primary cilia disassembly before mitosis are largely unknown. Here we identify a mechanism that favours cilium disassembly and maintains the disassembled state. We show that co-localization of the S/G2 phase kinase, Nek2 and Kif24 triggers Kif24 phosphorylation, inhibiting cilia formation. We show that Kif24, a microtubule depolymerizing kinesin, is phosphorylated by Nek2, which stimulates its activity and prevents the outgrowth of cilia in proliferating cells, independent of Aurora A and HDAC6. Our data also suggest that cilium assembly and disassembly are in dynamic equilibrium, but Nek2 and Kif24 can shift the balance toward disassembly. Further, Nek2 and Kif24 are overexpressed in breast cancer cells, and ablation of these proteins restores ciliation in these cells, thereby reducing proliferation. Thus, Kif24 is a physiological substrate of Nek2, which regulates cilia disassembly through a concerted mechanism involving Kif24-mediated microtubule depolymerization.
PMID: 26290419
ISSN: 2041-1723
CID: 1732382

Fatal attraction

Ringstad, Niels
A beetle pheromone that lures nematode worms to an insect host can also stop their development or even kill them outright.
PMID: 25422917
ISSN: 2050-084x
CID: 1369072

A chemoreceptor that detects molecular carbon dioxide

Smith, Ewan St John; Martinez-Velazquez, Luis; Ringstad, Niels
Animals from diverse phyla possess neurons that are activated by the product of aerobic respiration, CO2. It has long been thought that such neurons primarily detect the CO2 metabolites protons and bicarbonate. We have determined the chemical tuning of isolated CO2 chemosensory BAG neurons of the nematode Caenorhabditis elegans. We show that BAG neurons are principally tuned to detect molecular CO2, although they can be activated by acid stimuli. One component of the BAG transduction pathway, the receptor-type guanylate cyclase GCY-9, suffices to confer cellular sensitivity to both molecular CO2 and acid, indicating that it is a bifunctional chemoreceptor. We speculate that in other animals, receptors similarly capable of detecting molecular CO2 might mediate effects of CO2 on neural circuits and behavior.
PMID: 24240097
ISSN: 0021-9258
CID: 746082

IRK-1 Potassium Channels Mediate Peptidergic Inhibition of Caenorhabditis elegans Serotonin Neurons via a Go Signaling Pathway

Emtage, Lesley; Aziz-Zaman, Sonya; Padovan-Merhar, Olivia; Horvitz, H Robert; Fang-Yen, Christopher; Ringstad, Niels
To identify molecular mechanisms that function in G-protein signaling, we have performed molecular genetic studies of a simple behavior of the nematode Caenorhabditis elegans, egg laying, which is driven by a pair of serotonergic neurons, the hermaphrodite-specific neurons (HSNs). The activity of the HSNs is regulated by the G(o)-coupled receptor EGL-6, which mediates inhibition of the HSNs by neuropeptides. We report here that this inhibition requires one of three inwardly rectifying K(+) channels encoded by the C. elegans genome: IRK-1. Using ChannelRhodopsin-2-mediated stimulation of HSNs, we observed roles for egl-6 and irk-1 in regulating the excitability of HSNs. Although irk-1 is required for inhibition of HSNs by EGL-6 signaling, we found that other G(o) signaling pathways that inhibit HSNs involve irk-1 little or not at all. These findings suggest that the neuropeptide receptor EGL-6 regulates the potassium channel IRK-1 via a dedicated pool of G(o) not involved in other G(o)-mediated signaling. We conclude that G-protein-coupled receptors that signal through the same G-protein in the same cell might activate distinct effectors and that specific coupling of a G-protein-coupled receptor to its effectors can be determined by factors other than its associated G-proteins.
PMID: 23152612
ISSN: 0270-6474
CID: 182522

The neurobiology of sensing respiratory gases for the control of animal behavior

Ma, Dengke K; Ringstad, Niels
Aerobic metabolism is fundamental for almost all animal life. Cellular consumption of oxygen (O(2)) and production of carbon dioxide (CO(2)) signal metabolic states and physiological stresses. These respiratory gases are also detected as environmental cues that can signal external food quality and the presence of prey, predators and mates. In both contexts, animal nervous systems are endowed with mechanisms for sensing O(2)/CO(2) to trigger appropriate behaviors and maintain homeostasis of internal O(2)/CO(2). Although different animal species show different behavioral responses to O(2)/CO(2), some underlying molecular mechanisms and pathways that function in the detection of respiratory gases are fundamentally similar and evolutionarily conserved. Studies of Caenorhabditis elegans and Drosophila melanogaster have identified roles for cyclic nucleotide signaling and the hypoxia inducible factor (HIF) transcriptional pathway in mediating behavioral responses to respiratory gases. Understanding how simple invertebrate nervous systems detect respiratory gases to control behavior might reveal general principles common to nematodes, insects and vertebrates that function in the molecular sensing of respiratory gases and the neural control of animal behaviors.
PMID: 22876258
ISSN: 1674-7984
CID: 232202

A Single Gene Target of an ETS-Family Transcription Factor Determines Neuronal CO(2)-Chemosensitivity

Brandt, Julia P; Aziz-Zaman, Sonya; Juozaityte, Vaida; Martinez-Velazquez, Luis A; Petersen, Jakob Gramstrup; Pocock, Roger; Ringstad, Niels
Many animals possess neurons specialized for the detection of carbon dioxide (CO(2)), which acts as a cue to elicit behavioral responses and is also an internally generated product of respiration that regulates animal physiology. In many organisms how such neurons detect CO(2) is poorly understood. We report here a mechanism that endows C. elegans neurons with the ability to detect CO(2). The ETS-5 transcription factor is necessary for the specification of CO(2)-sensing BAG neurons. Expression of a single ETS-5 target gene, gcy-9, which encodes a receptor-type guanylate cyclase, is sufficient to bypass a requirement for ets-5 in CO(2)-detection and transforms neurons into CO(2)-sensing neurons. Because ETS-5 and GCY-9 are members of gene families that are conserved between nematodes and vertebrates, a similar mechanism might act in the specification of CO(2)-sensing neurons in other phyla.
PMID: 22479504
ISSN: 1932-6203
CID: 163592