Try a new search

Format these results:

Searched for:

person:ringsn01

in-biosketch:yes

Total Results:

37


Fission and uncoating of synaptic clathrin-coated vesicles are perturbed by disruption of interactions with the SH3 domain of endophilin

Gad, H; Ringstad, N; Low, P; Kjaerulff, O; Gustafsson, J; Wenk, M; Di Paolo, G; Nemoto, Y; Crun, J; Ellisman, M H; De Camilli, P; Shupliakov, O; Brodin, L
Coordination between sequential steps in synaptic vesicle endocytosis, including clathrin coat formation, fission, and uncoating, appears to involve proteinprotein interactions. Here, we show that compounds that disrupt interactions of the SH3 domain of endophilin with dynamin and synaptojanin impair synaptic vesicle endocytosis in a living synapse. Two distinct endocytic intermediates accumulated. Free clathrin-coated vesicles were induced by a peptide-blocking endophilin's SH3 domain and by antibodies to the proline-rich domain (PRD) of synaptojanin. Invaginated clathrin-coated pits were induced by the same peptide and by the SH3 domain of endophilin. We suggest that the SH3 domain of endophilin participates in both fission and uncoating and that it may be a key component of a molecular switch that couples the fission reaction to uncoating
PMID: 10985350
ISSN: 0896-6273
CID: 103169

A functional link between dynamin and the actin cytoskeleton at podosomes

Ochoa, G C; Slepnev, V I; Neff, L; Ringstad, N; Takei, K; Daniell, L; Kim, W; Cao, H; McNiven, M; Baron, R; De Camilli, P
Cell transformation by Rous sarcoma virus results in a dramatic change of adhesion structures with the substratum. Adhesion plaques are replaced by dot-like attachment sites called podosomes. Podosomes are also found constitutively in motile nontransformed cells such as leukocytes, macrophages, and osteoclasts. They are represented by columnar arrays of actin which are perpendicular to the substratum and contain tubular invaginations of the plasma membrane. Given the similarity of these tubules to those generated by dynamin around a variety of membrane templates, we investigated whether dynamin is present at podosomes. Immunoreactivities for dynamin 2 and for the dynamin 2-binding protein endophilin 2 (SH3P8) were detected at podosomes of transformed cells and osteoclasts. Furthermore, GFP wild-type dynamin 2aa was targeted to podosomes. As shown by fluorescence recovery after photobleaching, GFP-dynamin 2aa and GFP-actin had a very rapid and similar turnover at podosomes. Expression of the GFP-dynamin 2aa(G273D) abolished podosomes while GFP-dynamin(K44A) was targeted to podosomes but delayed actin turnover. These data demonstrate a functional link between a member of the dynamin family and actin at attachment sites between cells and the substratum
PMCID:2180219
PMID: 10908579
ISSN: 0021-9525
CID: 103168

Identification of the endophilins (SH3p4/p8/p13) as novel binding partners for the beta1-adrenergic receptor

Tang, Y; Hu, L A; Miller, W E; Ringstad, N; Hall, R A; Pitcher, J A; DeCamilli, P; Lefkowitz, R J
Several G-protein coupled receptors, such as the beta1-adrenergic receptor (beta1-AR), contain polyproline motifs within their intracellular domains. Such motifs in other proteins are known to mediate protein-protein interactions such as with Src homology (SH)3 domains. Accordingly, we used the proline-rich third intracellular loop of the beta1-AR either as a glutathione S-transferase fusion protein in biochemical 'pull-down' assays or as bait in the yeast two-hybrid system to search for interacting proteins. Both approaches identified SH3p4/p8/p13 (also referred to as endophilin 1/2/3), a SH3 domain-containing protein family, as binding partners for the beta1-AR. In vitro and in human embryonic kidney (HEK) 293 cells, SH3p4 specifically binds to the third intracellular loop of the beta1-AR but not to that of the beta2-AR. Moreover, this interaction is mediated by the C-terminal SH3 domain of SH3p4. Functionally, overexpression of SH3p4 promotes agonist-induced internalization and modestly decreases the Gs coupling efficacy of beta1-ARs in HEK293 cells while having no effect on beta2-ARs. Thus, our studies demonstrate a role of the SH3p4/p8/p13 protein family in beta1-AR signaling and suggest that interaction between proline-rich motifs and SH3-containing proteins may represent a previously underappreciated aspect of G-protein coupled receptor signaling
PMCID:22990
PMID: 10535961
ISSN: 0027-8424
CID: 103165

Endophilin/SH3p4 is required for the transition from early to late stages in clathrin-mediated synaptic vesicle endocytosis

Ringstad, N; Gad, H; Low, P; Di Paolo, G; Brodin, L; Shupliakov, O; De Camilli, P
Endophilin/SH3p4 is a protein highly enriched in nerve terminals that binds the GTPase dynamin and the polyphosphoinositide phosphatase synaptojanin, two proteins implicated in synaptic vesicle endocytosis. We show here that antibody-mediated disruption of endophilin function in a tonically stimulated synapse leads to a block in the invagination of clathrin-coated pits adjacent to the active zone and therefore to a block of synaptic vesicle recycling. We also show that in a cell-free system, endophilin is not associated with clathrin coats and is a functional partner of dynamin. Our findings suggest that endophilin is part of a biochemical machinery that acts in trans to the clathrin coat from early stages to vesicle fission
PMID: 10677033
ISSN: 0896-6273
CID: 103167

Synaptojanin 1: localization on coated endocytic intermediates in nerve terminals and interaction of its 170 kDa isoform with Eps15

Haffner, C; Takei, K; Chen, H; Ringstad, N; Hudson, A; Butler, M H; Salcini, A E; Di Fiore, P P; De Camilli, P
Synaptojanin 1 is an inositol 5-phosphatase with a putative role in clathrin-mediated endocytosis. Goal of this study was to provide new evidence for this hypothesis. We show that synaptojanin 1 is concentrated at clathrin-coated endocytic intermediates in nerve terminals. Furthermore, we report that synaptojanin-170, an alternatively spliced isoform of synaptojanin 1, binds Eps15, a clathrin coat-associated protein. Binding is mediated by the COOH-terminal region of synaptojanin-170 which we show here to be poorly conserved from rat to humans, but to contain in both species three asparagine-proline-phenylalanine (NPF) repeats. This motif has been found to be the core of the binding site for the EH domains of Eps15. Together with previous data, our results suggest that synaptojanin 1 can be recruited to clathrin-coated pits via a multiplicity of interactions
PMID: 9428629
ISSN: 0014-5793
CID: 103252

The SH3p4/Sh3p8/SH3p13 protein family: binding partners for synaptojanin and dynamin via a Grb2-like Src homology 3 domain

Ringstad, N; Nemoto, Y; De Camilli, P
The GTPase dynamin I and the inositol 5-phosphatase synaptojanin are nerve terminal proteins implicated in synaptic vesicle recycling. Both proteins contain COOH-terminal proline-rich domains that can interact with a variety of Src homology 3 (SH3) domains. A major physiological binding partner for dynamin I and synaptojanin in the nervous system is amphiphysin I, an SH3 domain-containing protein also concentrated in nerve terminals. We have used the proline-rich tail of synaptojanin to screen a rat brain library by the two-hybrid method to identify additional interacting partners of synaptojanin. Three related proteins containing SH3 domains that are closely related to the SH3 domains of Grb2 were isolated: SH3p4, SH3p8, and SH3p13. Further biochemical studies demonstrated that the SH3p4/8/13 proteins bind to both synaptojanin and dynamin I. The SH3p4/8/13 transcripts are differentially expressed in tissues: SH3p4 mRNA was detected only in brain, SH3p13 mRNA was present in brain and testis, and the SH3p8 transcript was detected at similar levels in multiple tissues. Members of the SH3p4/8/13 protein family were found to be concentrated in nerve terminals, and pools of synaptojanin and dynamin I were coprecipitated from brain extracts with antibodies recognizing SH3p4/8/13. These findings underscore the important role of SH3-mediated interactions in synaptic vesicle recycling
PMCID:23017
PMID: 9238017
ISSN: 0027-8424
CID: 103251

Activation of multiple antibiotic resistance and binding of stress-inducible promoters by Escherichia coli Rob protein

Ariza, R R; Li, Z; Ringstad, N; Demple, B
Multiple antibiotic resistance in Escherichia coli can be mediated by induction of the SoxS or MarA protein, triggered by oxygen radicals (in the soxRS regulon) or certain antibiotics (in the marRAB regulon), respectively. These small proteins (SoxS, 107 residues; MarA, 127 residues) are homologous to the C terminus of the XylS-AraC family of proteins and are more closely related to a approximately 100-residue segment in the N terminus of Rob protein, which binds the right arm of the replication origin, oriC. We investigated whether the SoxS-MarA homology in Rob might extend to the regulation of some of the same inducible genes. Overexpression of Rob indeed conferred multiple antibiotic resistance similar to that known for SoxS and MarA (against chloramphenicol, tetracycline, nalidixic acid, and puromycin), as well as resistance to the superoxide-generating compound phenazine methosulfate. The Rob-induced antibiotic resistance depended only partially on the micF antisense RNA that down-regulates the OmpF outer membrane porin to limit antibiotic uptake. Similar antibiotic resistance was conferred by expression of a Rob fragment containing only the N-terminal 123 residues that constitute the SoxS-MarA homology. Both intact Rob and the N-terminal fragment activated expression of stress genes (inaA, fumC, sodA) but with a pattern distinct from that found for SoxS and MarA. Purified Rob protein bound a DNA fragment containing the micF promoter (50% bound at approximately 10(-9) M Rob) as strongly as it did oriC, and it bound more weakly to DNA containing the sodA, nfo, or zwf promoter (50% bound at 10(-8) to 10(-7) M). Rob formed multiple DNA-protein complexes with these fragments, as seen previously for SoxS. These data point to a DNA-binding gene activator module used in different protein contexts
PMCID:176790
PMID: 7896685
ISSN: 0021-9193
CID: 103248