Searched for: person:romw01
in-biosketch:true
Annals of Education: Teaching Climate Change and Global Public Health
Rom, William N
The climate crisis is a health emergency: breaking temperature records every successive month, increasing mortality from hurricanes/cyclones resulting in >USD150 billion/year in damages, and mounting global loss of life from floods, droughts, and food insecurity. An entire course on climate change and global public health was envisioned, designed for students in public health, and delivered to Masters level students. The course content included the physical science behind global heating, heat waves, extreme weather disasters, arthropod-related diseases, allergies, air pollution epidemiology, melting ice and sea level rise, climate denialism, renewable energy and economics, social cost of carbon, and public policy. The methods included student engagement in presenting two air pollution epidemiological or experimental papers on fossil fuel air pollution. Second, they authored a mid-term paper on a specific topic in the climate crisis facing their locale, e.g., New York City. Third, they focused on a State, evaluating their climate change laws and their plans to harness renewable wind, solar, storage, nuclear, and geothermal energy. Students elsewhere covered regional entities' approach to renewable energy. Fourth, the global impact was presented by student teams presenting a country's nationally determined contribution to the Paris Climate Agreement. Over 200 Master's students completed the course; the participation and feedback demonstrated markedly improved knowledge and evaluation of the course over time.
PMCID:10815579
PMID: 38248506
ISSN: 1660-4601
CID: 5846532
A New Model of Learning: Environmental Health in a Global World
Rom, William N; Rao, Aishwarya; Hoepner, Lori; Dickey, Chris
INTRODUCTION:Environmental Health in a Global World at New York University was re-designed as a class participatory effort, challenging undergraduate students to understand environmental hazards and the resultant adverse health outcomes by embracing the inherent complexity of environmental risks and proposing solutions. METHODS:Following introductory lectures, students are placed into teams and assigned a specific perspective, or avatar, which includes learning to see the challenge from the perspective of a technical expert such as a biologist, an engineer, or an anthropologist. The teams then design specific systems maps to visualize the complex interactions that lead to adverse health outcomes after a given environmental exposure. The maps highlight potential leverage points where relatively minor interventions can provide a disproportionate benefit in health outcomes. The teams then explore potential interventions and identify the potential unintended consequences of those actions, develop and advocate for innovative new strategies to mitigate risk and improve outcomes. RESULTS AND DISCUSSION:Over the past 5 years, we have taught this methodology to over 680 students with strong, student-oriented results. The teams created and presented more than 100 strategies, addressing a diverse set of environmental challenges that include water contamination, gun violence, air pollution, environmental justice, health security, and climate change. Developing the strategies helped the students understand environmental threats in a more holistic way, provided them with some agency in finding solutions, and offered an opportunity for them to improve their presentation skills. The responses in course evaluations have been enthusiastic, with many students reporting a deep impact on their college experience.
PMCID:10297959
PMID: 37372732
ISSN: 1660-4601
CID: 5846522
Ethical thinking in occupational and environmental medicine: Commentaries from the Selikoff Fund for Occupational and Environmental Cancer Research
Samuels, Sheldon W; Ringen, Knut; Rom, William N; Frank, Arthur
A tribute to Dr. Irving J. Selikoff MD, the founder of this journal, is indeed welcome now more than two decades after his passing. He was known during his lifetime as the US Father of Environmental Medicine which at the time encompassed occupational medicine and much more as industry also polluted the general environment. The 1970s were a busy time as OSHA and the EPA were newly formed and high exposures to workers were no exception. Dr. Selikoff was a brave pioneer examining workers throughout the country and Canada, publicizing their exposures, and writing and presenting the scientific results. Industry was not always receptive and controlled an astounding amount of narrative, with the creation of the American Journal of Industrial Medicine filling a void of scientific need. We four authors write about the ethics of occupational health, the plight of nuclear energy workers, the climate crisis and opportunity for unions to engage workers, and the global march toward educating medical students on workers' health and safety. All four of us interacted with Dr. Selikoff during his tenure at Mount Sinai, and over the years joined each other in promoting his legacy. Toward that end we have written articles honoring his memory.
PMCID:9302668
PMID: 35156722
ISSN: 1097-0274
CID: 5846512
Lower airway dysbiosis affects lung cancer progression
Tsay, Jun-Chieh J; Wu, Benjamin G; Sulaiman, Imran; Gershner, Katherine; Schluger, Rosemary; Li, Yonghua; Yie, Ting-An; Meyn, Peter; Olsen, Evan; Perez, Luisannay; Franca, Brendan; Carpenito, Joseph; Iizumi, Tadasu; El-Ashmawy, Mariam; Badri, Michelle; Morton, James T; Shen, Nan; He, Linchen; Michaud, Gaetane; Rafeq, Samaan; Bessich, Jamie L; Smith, Robert L; Sauthoff, Harald; Felner, Kevin; Pillai, Ray; Zavitsanou, Anastasia-Maria; Koralov, Sergei B; Mezzano, Valeria; Loomis, Cynthia A; Moreira, Andre L; Moore, William; Tsirigos, Aristotelis; Heguy, Adriana; Rom, William N; Sterman, Daniel H; Pass, Harvey I; Clemente, Jose C; Li, Huilin; Bonneau, Richard; Wong, Kwok-Kin; Papagiannakopoulos, Thales; Segal, Leopoldo N
In lung cancer, enrichment of the lower airway microbiota with oral commensals commonly occurs and ex vivo models support that some of these bacteria can trigger host transcriptomic signatures associated with carcinogenesis. Here, we show that this lower airway dysbiotic signature was more prevalent in group IIIB-IV TNM stage lung cancer and is associated with poor prognosis, as shown by decreased survival among subjects with early stage disease (I-IIIA) and worse tumor progression as measured by RECIST scores among subjects with IIIB-IV stage disease. In addition, this lower airway microbiota signature was associated with upregulation of IL-17, PI3K, MAPK and ERK pathways in airway transcriptome, and we identified Veillonella parvula as the most abundant taxon driving this association. In a KP lung cancer model, lower airway dysbiosis with V. parvula led to decreased survival, increased tumor burden, IL-17 inflammatory phenotype and activation of checkpoint inhibitor markers.
PMID: 33177060
ISSN: 2159-8290
CID: 4663012
Value of metalloproteinases in predicting COPD in heavy urban smokers
Tsay, Jun-Chieh J; Hu, Yingjie; Goldberg, Judith D; Wang, Bin; Vijayalekshmy, Soumya; Yie, Ting-An; Bantis, Katrina; Sterman, Daniel H; Rom, William N
BACKGROUND:Emphysema in asymptomatic heavy smokers can be detected during CT-scan screening for lung cancer. Metalloproteinases (MMPs) have been found to play a role in the pathogenesis of chronic obstructive pulmonary disease and to possibly serve as biomarkers for emphysema. METHODS:The NYU Lung Cancer Biomarker Center enrolled study subjects over 50 years of age with lung cancer risk factors from January 1, 2010, to December 31, 2015. These subjects received chest multi-detector computed tomography, spirometry, and provided serum for immunoassays for metalloproteinases (MMP) -1, -2, -7, -9, -10 and tissue inhibitor of metalloproteinases (TIMP) -1 and -2. RESULTS:/FVC percent compared to smokers without emphysema (68 ± 11 (mean ± sd) versus 75 ± 8; p < 0.0001). Increased age and pack-years of smoking were associated with increased odds of emphysema. None of the metalloproteinases or tissue inhibitors of metalloproteinases were useful to predict the presence of emphysema in smokers. CONCLUSION/CONCLUSIONS:/FVC ratio).
PMCID:7465798
PMID: 32878618
ISSN: 1465-993x
CID: 4583382
A Gene Expression Classifier from Whole Blood Distinguishes Benign from Malignant Lung Nodules Detected by Low-Dose CT
Kossenkov, Andrew V; Qureshi, Rehman; Dawany, Noor B; Wickramasinghe, Jayamanna; Liu, Qin; Majumdar, R Sonali; Chang, Celia; Widura, Sandy; Kumar, Trisha; Horng, Wen-Hwai; Konnisto, Eric; Criner, Gerard; Tsay, Jun-Chieh J; Pass, Harvey; Yendamuri, Sai; Vachani, Anil; Bauer, Thomas; Nam, Brian; Rom, William N; Showe, Michael K; Showe, Louise C
: Low-dose CT (LDCT) is widely accepted as the preferred method for detecting pulmonary nodules. However, the determination of whether a nodule is benign or malignant involves either repeated scans or invasive procedures that sample the lung tissue. Noninvasive methods to assess these nodules are needed to reduce unnecessary invasive tests. In this study, we have developed a pulmonary nodule classifier (PNC) using RNA from whole blood collected in RNA-stabilizing PAXgene tubes that addresses this need. Samples were prospectively collected from high-risk and incidental subjects with a positive lung CT scan. A total of 821 samples from 5 clinical sites were analyzed. Malignant samples were predominantly stage 1 by pathologic diagnosis and 97% of the benign samples were confirmed by 4 years of follow-up. A panel of diagnostic biomarkers was selected from a subset of the samples assayed on Illumina microarrays that achieved a ROC-AUC of 0.847 on independent validation. The microarray data were then used to design a biomarker panel of 559 gene probes to be validated on the clinically tested NanoString nCounter platform. RNA from 583 patients was used to assess and refine the NanoString PNC (nPNC), which was then validated on 158 independent samples (ROC-AUC = 0.825). The nPNC outperformed three clinical algorithms in discriminating malignant from benign pulmonary nodules ranging from 6-20 mm using just 41 diagnostic biomarkers. Overall, this platform provides an accurate, noninvasive method for the diagnosis of pulmonary nodules in patients with non-small cell lung cancer. SIGNIFICANCE: These findings describe a minimally invasive and clinically practical pulmonary nodule classifier that has good diagnostic ability at distinguishing benign from malignant pulmonary nodules.
PMID: 30487137
ISSN: 1538-7445
CID: 3562722
Utility of Regional Airway Epithelial Cells for Lung Cancer Biomarker [Meeting Abstract]
Kwok, B.; Chiang, V.; Thomas, S.; Alapaty, S.; Yie, T.; Rom, W. N.; Tsay, J.
ISI:000466776702414
ISSN: 1073-449x
CID: 5266082
Airway Microbiota Is Associated with Up-Regulation of the PI3K Pathway in Lung Cancer
Tsay, Jun-Chieh J; Wu, Benjamin G; Badri, Michelle H; Clemente, Jose C; Shen, Nan; Meyn, Peter; Li, Yonghua; Yie, Ting-An; Lhakhang, Tenzin; Olsen, Evan; Murthy, Vivek; Michaud, Gaetane; Sulaiman, Imran; Tsirigos, Aristotelis; Heguy, Adriana; Pass, Harvey; Weiden, Michael D; Rom, William N; Sterman, Daniel H; Bonneau, Richard; Blaser, Martin J; Segal, Leopoldo N
BACKGROUND:In lung cancer, upregulation of the PI3K pathway is an early event that contributes to cell proliferation, survival, and tissue invasion. Upregulation of this pathway was recently described as associated with enrichment of the lower airways with bacteria identified as oral commensals. We hypothesize that host-microbe interactions in the lower airways of subjects with lung cancer affect known cancer pathways. METHODS:Airway brushes were collected prospectively from subjects with lung nodules at time of diagnostic bronchoscopy, including 39 subjects with final lung cancer diagnoses and 36 subjects with non-cancer diagnosis. Additionally, samples from 10 healthy control subjects were included. 16S rRNA gene amplicon sequencing and paired transcriptome sequencing (RNAseq) were performed on all airway samples. In addition, an in vitro model with airway epithelial cells exposed to bacteria/bacterial products was performed. RESULTS:The composition of the lower airway transcriptome in the cancer patients was significantly different from the controls, which included upregulation of ERK and PI3K signaling pathways. The lower airways of lung cancer patients were enriched for oral taxa (Streptococcus and Veillonella), which was associated with upregulation of the ERK and PI3K signaling pathways. In vitro exposure of airway epithelial cells to Veillonella, Prevotella, and Streptococcus led to upregulation of these same signaling pathways. CONCLUSIONS:The data presented here shows that several transcriptomic signatures previously identified as relevant to lung cancer pathogenesis are associated with enrichment of the lower airway microbiota with oral commensals.
PMID: 29864375
ISSN: 1535-4970
CID: 3144342
Epigenetically regulated PAX6 drives cancer cells toward a stem-like state via GLI-SOX2 signaling axis in lung adenocarcinoma
Ooki, Akira; Dinalankara, Wikum; Marchionni, Luigi; Tsay, Jun-Chieh J; Goparaju, Chandra; Maleki, Zahra; Rom, William N; Pass, Harvey I; Hoque, Mohammad O
It remains unclear whether PAX6 acts as a crucial transcription factor for lung cancer stem cell (CSC) traits. We demonstrate that PAX6 acts as an oncogene responsible for induction of cancer stemness properties in lung adenocarcinoma (LUAD). Mechanistically, PAX6 promotes GLI transcription, resulting in SOX2 upregulation directly by the binding of GLI to the proximal promoter region of the SOX2 gene. The overexpressed SOX2 enhances the expression of key pluripotent factors (OCT4 and NANOG) and suppresses differentiation lineage factors (HOPX and NKX2-1), driving cancer cells toward a stem-like state. In contrast, in the differentiated non-CSCs, PAX6 is transcriptionally silenced by its promoter methylation. In human lung cancer tissues, the positive linear correlations of PAX6 expression with GLI and SOX2 expression and its negative correlations with HOPX and NKX2-1 expression were observed. Therapeutically, the blockade of the PAX6-GLI-SOX2 signaling axis elicits a long-lasting therapeutic efficacy by limiting CSC expansion following chemotherapy. Furthermore, a methylation panel including the PAX6 gene yielded a sensitivity of 79.1% and specificity of 83.3% for cancer detection using serum DNA from stage IA LUAD. Our findings provide a rationale for targeting the PAX6-GLI-SOX2 signaling axis with chemotherapy as an effective therapeutic strategy and support the clinical utility of PAX6 gene promoter methylation as a biomarker for early lung cancer detection.
PMID: 29980786
ISSN: 1476-5594
CID: 3186312
Aldehydes are the predominant forces inducing DNA damage and inhibiting DNA repair in tobacco smoke carcinogenesis
Weng, Mao-Wen; Lee, Hyun-Wook; Park, Sung-Hyun; Hu, Yu; Wang, Hsing-Tsui; Chen, Lung-Chi; Rom, William N; Huang, William C; Lepor, Herbert; Wu, Xue-Ru; Yang, Chung S; Tang, Moon-Shong
Tobacco smoke (TS) contains numerous cancer-causing agents, with polycyclic aromatic hydrocarbons (PAHs) and nitrosamines being most frequently cited as the major TS human cancer agents. Many lines of evidence seriously question this conclusion. To resolve this issue, we determined DNA adducts induced by the three major TS carcinogens: benzo(a)pyrene (BP), 4-(methylnitrosamine)-1-(3-pyridyl)-1-butanoe (NNK), and aldehydes in humans and mice. In mice, TS induces abundant aldehyde-induced γ-hydroxy-propano-deoxyguanosine (γ-OH-PdG) and α-methyl-γ-OH-PdG adducts in the lung and bladder, but not in the heart and liver. TS does not induce the BP- and NNK-DNA adducts in lung, heart, liver, and bladder. TS also reduces DNA repair activity and the abundance of repair proteins, XPC and OGG1/2, in lung tissues. These TS effects were greatly reduced by diet with polyphenols. We found that γ-OH-PdG and α-methyl-γ-OH-PdG are the major adducts formed in tobacco smokers' buccal cells as well as the normal lung tissues of tobacco-smoking lung cancer patients, but not in lung tissues of nonsmokers. However, the levels of BP- and NNK-DNA adducts are the same in lung tissues of smokers and nonsmokers. We found that while BP and NNK can induce BPDE-dG and O6-methyl-dG adducts in human lung and bladder epithelial cells, these inductions can be inhibited by acrolein. Acrolein also can reduce DNA repair activity and repair proteins. We propose a TS carcinogenesis paradigm. Aldehydes are major TS carcinogens exerting dominant effect: Aldehydes induce mutagenic PdG adducts, impair DNA repair functions, and inhibit many procarcinogens in TS from becoming DNA-damaging agents.
PMCID:6142211
PMID: 29915082
ISSN: 1091-6490
CID: 3158092