Searched for: person:rostaa02
in-biosketch:yes
Microglia contribute to the production of the amyloidogenic ABri peptide in familial British dementia
Arber, Charles; Casey, Jackie M; Crawford, Samuel; Rambarack, Naiomi; Yaman, Umran; Wiethoff, Sarah; Augustin, Emma; Piers, Thomas M; Price, Matthew; Rostagno, Agueda; Ghiso, Jorge; Lewis, Patrick A; Revesz, Tamas; Hardy, John; Pocock, Jennifer M; Houlden, Henry; Schott, Jonathan M; Salih, Dervis A; Lashley, Tammaryn; Wray, Selina
Mutations in ITM2B cause familial British, Danish, Chinese, and Korean dementias. In familial British dementia (FBD), a mutation in the stop codon of the ITM2B gene (also known as BRI2) causes a C-terminal cleavage fragment of the ITM2B/BRI2 protein to be extended by 11 amino acids. This fragment, termed amyloid-Bri (ABri), is highly insoluble and forms extracellular plaques in the brain. ABri plaques are accompanied by tau pathology, neuronal cell death and progressive dementia, with striking parallels to the aetiology and pathogenesis of Alzheimer's disease. The molecular mechanisms underpinning FBD are ill-defined. Using patient-derived induced pluripotent stem cells, we show that expression of ITM2B/BRI2 is 34-fold higher in microglia than neurons and 15-fold higher in microglia compared with astrocytes. This cell-specific enrichment is supported by expression data from both mouse and human brain tissue. ITM2B/BRI2 protein levels are higher in iPSC-microglia compared with neurons and astrocytes. The ABri peptide was detected in patient iPSC-derived microglial lysates and conditioned media but was undetectable in patient-derived neurons and control microglia. The pathological examination of post-mortem tissue supports the presence of ABri in microglia that are in proximity to pre-amyloid deposits. Finally, gene co-expression analysis supports a role for ITM2B/BRI2 in disease-associated microglial responses. These data demonstrate that microglia are major contributors to the production of amyloid forming peptides in FBD, potentially acting as instigators of neurodegeneration. Additionally, these data also suggest ITM2B/BRI2 may be part of a microglial response to disease, motivating further investigations of its role in microglial activation. These data have implications for our understanding of the role of microglia and the innate immune response in the pathogenesis of FBD and other neurodegenerative dementias including Alzheimer's disease.
PMCID:11568029
PMID: 39546024
ISSN: 1432-0533
CID: 5753792
Microglia contribute to the production of the amyloidogenic ABri peptide in familial British dementia
Arber, Charles; Casey, Jackie M; Crawford, Samuel; Rambarack, Naiomi; Yaman, Umran; Wiethoff, Sarah; Augustin, Emma; Piers, Thomas M; Price, Matthew; Rostagno, Agueda; Ghiso, Jorge; Lewis, Patrick A; Revesz, Tamas; Hardy, John; Pocock, Jennifer M; Houlden, Henry; Schott, Jonathan M; Salih, Dervis A; Lashley, Tammaryn; Wray, Selina
Mutations in ITM2B cause familial British, Danish, Chinese, and Korean dementias. In familial British dementia (FBD), a mutation in the stop codon of the ITM2B gene (also known as BRI2) causes a C-terminal cleavage fragment of the ITM2B/BRI2 protein to be extended by 11 amino acids. This fragment, termed amyloid-Bri (ABri), is highly insoluble and forms extracellular plaques in the brain. ABri plaques are accompanied by tau pathology, neuronal cell death and progressive dementia, with striking parallels to the aetiology and pathogenesis of Alzheimer's disease. The molecular mechanisms underpinning FBD are ill-defined. Using patient-derived induced pluripotent stem cells, we show that expression of ITM2B/BRI2 is 34-fold higher in microglia than neurons and 15-fold higher in microglia compared with astrocytes. This cell-specific enrichment is supported by expression data from both mouse and human brain tissue. ITM2B/BRI2 protein levels are higher in iPSC-microglia compared with neurons and astrocytes. The ABri peptide was detected in patient iPSC-derived microglial lysates and conditioned media but was undetectable in patient-derived neurons and control microglia. The pathological examination of post-mortem tissue supports the presence of ABri in microglia that are in proximity to pre-amyloid deposits. Finally, gene co-expression analysis supports a role for ITM2B/BRI2 in disease-associated microglial responses. These data demonstrate that microglia are major contributors to the production of amyloid forming peptides in FBD, potentially acting as instigators of neurodegeneration. Additionally, these data also suggest ITM2B/BRI2 may be part of a microglial response to disease, motivating further investigations of its role in microglial activation. These data have implications for our understanding of the role of microglia and the innate immune response in the pathogenesis of FBD and other neurodegenerative dementias including Alzheimer's disease.
PMCID:11568029
PMID: 39546024
ISSN: 1432-0533
CID: 5753782
Functionally distinct pericyte subsets differently regulate amyloid-β deposition in patients with Alzheimer's disease
Bohannon, Diana G; Long, Danielle; Okhravi, Hamid R; Lee, Sunhee C; De Jesus, Christopher Lawrence; Neubert, Thomas A; Rostagno, Agueda A; Ghiso, Jorge A; Kim, Woong-Ki
Although the concept that the blood-brain barrier (BBB) plays an important role in the etiology and pathogenesis of Alzheimer's disease (AD) has become increasingly accepted, little is known yet about how it actually contributes. We and others have recently identified a novel functionally distinct subset of BBB pericytes (PCs). In the present study, we sought to determine whether these PC subsets differentially contribute to AD-associated pathologies by immunohistochemistry and amyloid beta (Aβ) peptidomics. We demonstrated that a disease-associated PC subset (PC2) expanded in AD patients compared to age-matched, cognitively unimpaired controls. Surprisingly, we found that this increase in the percentage of PC2 (%PC2) was correlated negatively with BBB breakdown in AD patients, unlike in natural aging or other reported disease conditions. The higher %PC2 in AD patients was also correlated with a lower Aβ42 plaque load and a lower Aβ42:Aβ40 ratio in the brain as determined by immunohistochemistry. Colocalization analysis of multicolor confocal immunofluorescence microscopy images suggests that AD patient with low %PC2 have higher BBB breakdown due to internalization of Aβ42 by the physiologically normal PC subset (PC1) and their concomitant cell death leading to more vessels without PCs and increased plaque load. On the contrary, it appears that PC2 can secrete cathepsin D to cleave and degrade Aβ built up outside of PC2 into more soluble forms, ultimately contributing to less BBB breakdown and reducing Aβ plaque load. Collectively our data shows functionally distinct mechanisms for PC1 and PC2 in high Aβ conditions, demonstrating the importance of correctly identifying these populations when investigating the contribution of neurovascular dysfunction to AD pathogenesis.
PMID: 38932696
ISSN: 1750-3639
CID: 5733272
Amino-terminally elongated Aβ peptides are generated by the secreted metalloprotease ADAMTS4 and deposit in a subset of Alzheimer's disease brains
Wirths, Oliver; Lehnen, Christina; Fricke, Merle; Talucci, Ivan; Klafki, Hans-Wolfgang; Morgado, Barbara; Lehmann, Sandra; Münch, Carolina; Liepold, Thomas; Wiltfang, Jens; Rostagno, Agueda; Ghiso, Jorge; Maric, Hans Michael; Jahn, Olaf; Weggen, Sascha
AIMS/OBJECTIVE:The aggregation and deposition of amyloid-β (Aβ) peptides in the brain is thought to be the initial driver in the pathogenesis of Alzheimer's disease (AD). Aside from full-length Aβ peptides starting with an aspartate residue in position 1, both N-terminally truncated and elongated Aβ peptides are produced by various proteases from the amyloid precursor protein (APP) and have been detected in brain tissues and body fluids. Recently, we demonstrated that the particularly abundant N-terminally truncated Aβ4-x peptides are generated by ADAMTS4, a secreted metalloprotease that is exclusively expressed in the oligodendrocyte cell population. In this study, we investigated whether ADAMTS4 might also be involved in the generation of N-terminally elongated Aβ peptides. METHODS:We used cell-free and cell-based assays in combination with matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF) and electrochemiluminescence sandwich immunoassays to identify and quantify N-terminally elongated Aβ peptide variants. Antibodies against these Aβ variants were characterised by peptide microarrays and employed for the immunohistochemical analyses of human brain samples. RESULTS:In this study, we discovered additional ADAMTS4 cleavage sites in APP. These were located N-terminal to Asp-(1) in the Aβ peptide sequence between residues Glu-(-7) and Ile-(-6) as well as Glu-(-4) and Val-(-3), resulting in the release of N-terminally elongated Aβ-6-x and Aβ-3-x peptides, of which the latter serve as a component in a promising Aβ-based plasma biomarker. Aβ-6/-3-40 peptides were detected in supernatants of various cell lines and in the cerebrospinal fluid (CSF), and ADAMTS4 enzyme activity promoted the release of Aβ-6/-3-x peptides. Furthermore, by immunohistochemistry, a subset of AD cases displayed evidence of extracellular and vascular localization of N-terminally elongated Aβ-6/-3-x peptides. DISCUSSION/CONCLUSIONS:The current findings implicate ADAMTS4 in both the pathological process of Aβ peptide aggregation and in the early detection of amyloid pathology in AD.
PMID: 38867123
ISSN: 1365-2990
CID: 5669212
Pathogenesis of Alzheimer's Disease [Editorial]
Rostagno, Agueda A
Alzheimer's disease (AD) is the most common type of dementia, accounting for 60% to 80% of all cases [...].
PMCID:9820480
PMID: 36613544
ISSN: 1422-0067
CID: 5410252
N-terminally truncated Aβ4-x proteoforms and their relevance for Alzheimer's pathophysiology
Rostagno, Agueda; Cabrera, Erwin; Lashley, Tammaryn; Ghiso, Jorge
BACKGROUND:The molecular heterogeneity of Alzheimer's amyloid-β (Aβ) deposits extends well beyond the classic Aβ1-40/Aβ1-42 dichotomy, substantially expanded by multiple post-translational modifications that increase the proteome diversity. Numerous truncated fragments consistently populate the brain Aβ peptidome, and their homeostatic regulation and potential contribution to disease pathogenesis are largely unknown. Aβ4-x peptides have been reported as major components of plaque cores and the limited studies available indicate their relative abundance in Alzheimer's disease (AD). METHODS:Immunohistochemistry was used to assess the topographic distribution of Aβ4-x species in well-characterized AD cases using custom-generated monoclonal antibody 18H6-specific for Aβ4-x species and blind for full-length Aβ1-40/Aβ1-42-in conjunction with thioflavin-S and antibodies recognizing Aβx-40 and Aβx-42 proteoforms. Circular dichroism, thioflavin-T binding, and electron microscopy evaluated the biophysical and aggregation/oligomerization properties of full-length and truncated synthetic homologues, whereas stereotaxic intracerebral injections of monomeric and oligomeric radiolabeled homologues in wild-type mice were used to evaluate their brain clearance characteristics. RESULTS:All types of amyloid deposits contained the probed Aβ epitopes, albeit expressed in different proportions. Aβ4-x species showed preferential localization within thioflavin-S-positive cerebral amyloid angiopathy and cored plaques, strongly suggesting poor clearance characteristics and consistent with the reduced solubility and enhanced oligomerization of their synthetic homologues. In vivo clearance studies demonstrated a fast brain efflux of N-terminally truncated and full-length monomeric forms whereas their oligomeric counterparts-particularly of Aβ4-40 and Aβ4-42-consistently exhibited enhanced brain retention. CONCLUSIONS:The persistence of aggregation-prone Aβ4-x proteoforms likely contributes to the process of amyloid formation, self-perpetuating the amyloidogenic loop and exacerbating amyloid-mediated pathogenic pathways.
PMCID:9158284
PMID: 35641972
ISSN: 2047-9158
CID: 5277592
Identification of Clusterin as a Major ABri- and ADan-Binding Protein Using Affinity Chromatography
Rostagno, Agueda; Calero, Miguel; Ghiso, Jorge
Affinity chromatography has, for many years, been at the research forefront as one of the simplest although highly versatile techniques capable of identifying biologically relevant protein-protein interactions. In the field of amyloid disorders, the use of ligands immobilized to a variety of affinity matrices was the method of choice to individualize proteins with affinity for soluble circulating forms of amyloid subunits. The methodology has also played an important role in the identification of proteins that interact with different amyloidogenic peptides and, as a result, are capable of modulating their physiological and pathological functions by altering solubility, aggregation propensity, and fibril formation proclivity. Along this line, classical studies conducted in the field of Alzheimer's disease (AD) identified clusterin as a major binding protein to both circulating soluble Aβ as well as to the brain deposited counterpart. The affinity chromatography-based approach employed herein, individualized clusterin as the major protein capable of binding the amyloid subunits associated with familial British and Danish dementias, two non-Aβ neurodegenerative conditions also exhibiting cerebral amyloid deposition and sharing striking similarities to AD. The data demonstrate that clusterin binding ability to amyloid molecules is not restricted to Aβ, suggesting a modulating effect on the aggregation/fibrillization propensity of the amyloidogenic peptides that is consistent with its known chaperone activity.
PMID: 35585310
ISSN: 1940-6029
CID: 5247652
Correction: Patient-specific Alzheimer-like pathology in trisomy 21 cerebral organoids reveals BACE2 as a gene dose-sensitive AD suppressor in human brain
Alić, Ivan; Goh, Pollyanna A; Murray, Aoife; Portelius, Erik; Gkanatsiou, Eleni; Gough, Gillian; Mok, Kin Y; Koschut, David; Brunmeir, Reinhard; Yeap, Yee Jie; O'Brien, Niamh L; Groet, Jürgen; Shao, Xiaowei; Havlicek, Steven; Dunn, N Ray; Kvartsberg, Hlin; Brinkmalm, Gunnar; Hithersay, Rosalyn; Startin, Carla; Hamburg, Sarah; Phillips, Margaret; Pervushin, Konstantin; Turmaine, Mark; Wallon, David; Rovelet-Lecrux, Anne; Soininen, Hilkka; Volpi, Emanuela; Martin, Joanne E; Foo, Jia Nee; Becker, David L; Rostagno, Agueda; Ghiso, Jorge; Krsnik, Željka; Å imić, Goran; Kostović, Ivica; MitreÄić, Dinko; Francis, Paul T; Blennow, Kaj; Strydom, Andre; Hardy, John; Zetterberg, Henrik; Nižetić, Dean
PMID: 34272490
ISSN: 1476-5578
CID: 4950442
Patient-specific Alzheimer-like pathology in trisomy 21 cerebral organoids reveals BACE2 as a gene dose-sensitive AD suppressor in human brain
Alić, Ivan; Goh, Pollyanna A; Murray, Aoife; Portelius, Erik; Gkanatsiou, Eleni; Gough, Gillian; Mok, Kin Y; Koschut, David; Brunmeir, Reinhard; Yeap, Yee Jie; O'Brien, Niamh L; Groet, Jürgen; Shao, Xiaowei; Havlicek, Steven; Dunn, N Ray; Kvartsberg, Hlin; Brinkmalm, Gunnar; Hithersay, Rosalyn; Startin, Carla; Hamburg, Sarah; Phillips, Margaret; Pervushin, Konstantin; Turmaine, Mark; Wallon, David; Rovelet-Lecrux, Anne; Soininen, Hilkka; Volpi, Emanuela; Martin, Joanne E; Foo, Jia Nee; Becker, David L; Rostagno, Agueda; Ghiso, Jorge; Krsnik, Željka; Å imić, Goran; Kostović, Ivica; MitreÄić, Dinko; Francis, Paul T; Blennow, Kaj; Strydom, Andre; Hardy, John; Zetterberg, Henrik; Nižetić, Dean
A population of more than six million people worldwide at high risk of Alzheimer's disease (AD) are those with Down Syndrome (DS, caused by trisomy 21 (T21)), 70% of whom develop dementia during lifetime, caused by an extra copy of β-amyloid-(Aβ)-precursor-protein gene. We report AD-like pathology in cerebral organoids grown in vitro from non-invasively sampled strands of hair from 71% of DS donors. The pathology consisted of extracellular diffuse and fibrillar Aβ deposits, hyperphosphorylated/pathologically conformed Tau, and premature neuronal loss. Presence/absence of AD-like pathology was donor-specific (reproducible between individual organoids/iPSC lines/experiments). Pathology could be triggered in pathology-negative T21 organoids by CRISPR/Cas9-mediated elimination of the third copy of chromosome 21 gene BACE2, but prevented by combined chemical β and γ-secretase inhibition. We found that T21 organoids secrete increased proportions of Aβ-preventing (Aβ1-19) and Aβ-degradation products (Aβ1-20 and Aβ1-34). We show these profiles mirror in cerebrospinal fluid of people with DS. We demonstrate that this protective mechanism is mediated by BACE2-trisomy and cross-inhibited by clinically trialled BACE1 inhibitors. Combined, our data prove the physiological role of BACE2 as a dose-sensitive AD-suppressor gene, potentially explaining the dementia delay in ~30% of people with DS. We also show that DS cerebral organoids could be explored as pre-morbid AD-risk population detector and a system for hypothesis-free drug screens as well as identification of natural suppressor genes for neurodegenerative diseases.
PMID: 32647257
ISSN: 1476-5578
CID: 4533252
Association of clusterin with the BRI2-derived amyloid molecules ABri and ADan
Rostagno, Agueda; Calero, Miguel; Holton, Janice L; Revesz, Tamas; Lashley, Tammaryn; Ghiso, Jorge
Familial British and Danish dementias (FBD and FDD) share striking neuropathological similarities with Alzheimer's disease (AD), including intraneuronal neurofibrillary tangles as well as parenchymal and vascular amyloid deposits. Multiple amyloid associated proteins with still controversial role in amyloidogenesis colocalize with the structurally different amyloid peptides ABri in FBD, ADan in FDD, and Aβ in AD. Genetic variants and plasma levels of one of these associated proteins, clusterin, have been identified as risk factors for AD. Clusterin is known to bind soluble Aβ in biological fluids, facilitate its brain clearance, and prevent its aggregation. The current work identifies clusterin as the major ABri- and ADan-binding protein and provides insight into the biochemical mechanisms leading to the association of clusterin with ABri and ADan deposits. Mirroring findings in AD, the studies corroborate clusterin co-localization with cerebral parenchymal and vascular amyloid deposits in both disorders. Ligand affinity chromatography with downstream Western blot and amino acid sequence analyses unequivocally identified clusterin as the major ABri- and ADan-binding plasma protein. ELISA highlighted a specific saturable binding of clusterin to ABri and ADan with low nanomolar Kd values within the same range as those previously demonstrated for the clusterin-Aβ interaction. Consistent with its chaperone activity, thioflavin T binding assays clearly showed a modulatory effect of clusterin on ABri and ADan aggregation/fibrillization properties. Our findings, together with the known multifunctional activity of clusterin and its modulatory activity on the complex cellular pathways leading to oxidative stress, mitochondrial dysfunction, and the induction of cell death mechanisms - all known pathogenic features of these protein folding disorders - suggests the likelihood of a more complex role and a translational potential for the apolipoprotein in the amelioration/prevention of these pathogenic mechanisms.
PMID: 34298087
ISSN: 1095-953x
CID: 4972432