Try a new search

Format these results:

Searched for:

person:rothee02

in-biosketch:yes

Total Results:

105


ULK1 inhibition overcomes compromised antigen presentation and restores antitumor immunity in LKB1 mutant lung cancer

Deng, Jiehui; Thennavan, Aatish; Dolgalev, Igor; Chen, Ting; Li, Jie; Marzio, Antonio; Poirier, John T; Peng, David; Bulatovic, Mirna; Mukhopadhyay, Subhadip; Silver, Heather; Papadopoulos, Eleni; Pyon, Val; Thakurdin, Cassandra; Han, Han; Li, Fei; Li, Shuai; Ding, Hailin; Hu, Hai; Pan, Yuanwang; Weerasekara, Vajira; Jiang, Baishan; Wang, Eric S; Ahearn, Ian; Philips, Mark; Papagiannakopoulos, Thales; Tsirigos, Aristotelis; Rothenberg, Eli; Gainor, Justin; Freeman, Gordon J; Rudin, Charles M; Gray, Nathanael S; Hammerman, Peter S; Pagano, Michele; Heymach, John V; Perou, Charles M; Bardeesy, Nabeel; Wong, Kwok-Kin
PMCID:8205437
PMID: 34142094
ISSN: 2662-1347
CID: 4917722

Cx43 hemichannel microdomain signaling at the intercalated disc enhances cardiac excitability

De Smet, Maarten Aj; Lissoni, Alessio; Nezlobinsky, Timur; Wang, Nan; Dries, Eef; Pérez-Hernández, Marta; Lin, Xianming; Amoni, Matthew; Vervliet, Tim; Witschas, Katja; Rothenberg, Eli; Bultynck, Geert; Schulz, Rainer; Panfilov, Alexander V; Delmar, Mario; Sipido, Karin R; Leybaert, Luc
Cx43, a major cardiac connexin, forms precursor hemichannels that accrue at the intercalated disc to assemble as gap junctions. While gap junctions are crucial for electrical conduction in the heart, little is known on potential roles of hemichannels. Recent evidence suggests that inhibiting Cx43 hemichannel opening with Gap19 has antiarrhythmic effects. Here, we used multiple electrophysiology, imaging and super-resolution techniques to understand and define the conditions underlying Cx43 hemichannel activation in ventricular cardiomyocytes, their contribution to diastolic Ca2+ release from the sarcoplasmic reticulum, and their impact on electrical stability. We showed that Cx43 hemichannels are activated during diastolic Ca2+ release in single ventricular cardiomyocytes and cardiomyocyte cell pairs from mouse and pig. This activation involved Cx43 hemichannel Ca2+ entry and coupling to Ca2+ release microdomains at the intercalated disc resulting in enhanced Ca2+ dynamics. Hemichannel opening furthermore contributed to delayed afterdepolarizations and triggered action potentials. In single cardiomyocytes, cardiomyocyte cell pairs and arterially perfused tissue wedges from failing human hearts, increased hemichannel activity contributed to electrical instability as compared to non-failing rejected donor hearts. We conclude that microdomain coupling between Cx43 hemichannels and Ca2+ release is a novel, targetable, mechanism of cardiac arrhythmogenesis in heart failure.
PMID: 33621213
ISSN: 1558-8238
CID: 4794482

Super-resolution mapping of cellular double-strand break resection complexes during homologous recombination

Whelan, Donna R; Rothenberg, Eli
Homologous recombination (HR) is a major pathway for repair of DNA double-strand breaks (DSBs). The initial step that drives the HR process is resection of DNA at the DSB, during which a multitude of nucleases, mediators, and signaling proteins accumulates at the damage foci in a manner that remains elusive. Using single-molecule localization super-resolution (SR) imaging assays, we specifically visualize the spatiotemporal behavior of key mediator and nuclease proteins as they resect DNA at single-ended double-strand breaks (seDSBs) formed at collapsed replication forks. By characterizing these associations, we reveal the in vivo dynamics of resection complexes involved in generating the long single-stranded DNA (ssDNA) overhang prior to homology search. We show that 53BP1, a protein known to antagonize HR, is recruited to seDSB foci during early resection but is spatially separated from repair activities. Contemporaneously, CtBP-interacting protein (CtIP) and MRN (MRE11-RAD51-NBS1) associate with seDSBs, interacting with each other and BRCA1. The HR nucleases EXO1 and DNA2 are also recruited and colocalize with each other and with the repair helicase Bloom syndrome protein (BLM), demonstrating multiple simultaneous resection events. Quantification of replication protein A (RPA) accumulation and ssDNA generation shows that resection is completed 2 to 4 h after break induction. However, both BRCA1 and BLM persist later into HR, demonstrating potential roles in homology search and repair resolution. Furthermore, we show that initial recruitment of BRCA1 and removal of Ku are largely independent of MRE11 exonuclease activity but dependent on MRE11 endonuclease activity. Combined, our observations provide a detailed description of resection during HR repair.
PMID: 33707212
ISSN: 1091-6490
CID: 4809492

Structural and Functional Characterization of A Nav1.5-Mitochondrial Couplon

Pérez-Hernández Duran, Marta; Leo-Macias, Alejandra; Keegan, Sarah; Jouni, Mariam; Kim, Joon-Chul; Agullo-Pascual, Esperanza; Vermij, Sarah H; Zhang, Mingliang; Liang, Feng-Xia; Burridge, Paul; Fenyo, David; Rothenberg, Eli; Delmar, Mario
Rationale: The cardiac sodium channel NaV1.5 has a fundamental role in excitability and conduction. Previous studies have shown that sodium channels cluster together in specific cellular subdomains. Their association with intracellular organelles in defined regions of the myocytes, and the functional consequences of that association, remain to be defined. Objective: To characterize a subcellular domain formed by sodium channel clusters in the crest region of the myocytes, and the subjacent subsarcolemmal mitochondria (SSM).Methods and Results: Through a combination of imaging approaches including super-resolution microscopy and electron microscopy we identified, in adult cardiac myocytes, a NaV1.5 subpopulation in close proximity to SSM; we further found that SSM preferentially host the mitochondrial Na+/Ca2+ exchanger (NCLX). This anatomical proximity led us to investigate functional changes in mitochondria resulting from sodium channel activity. Upon TTX exposure, mitochondria near NaV1.5 channels accumulated more Ca2+ and showed increased ROS production when compared to interfibrillar mitochondria. Finally, crosstalk between NaV1.5 channels and mitochondria was analyzed at a transcriptional level. We found that SCN5A and SLC8B1 (which encode NaV1.5 and NCLX, respectively) are negatively correlated both in a human transcriptome dataset (GTEx) and in human-induced pluripotent stem cell-derived cardiac myocytes deficient in SCN5A. Conclusions: We describe an anatomical hub (a couplon) formed by sodium channel clusters and SSM. Preferential localization of NCLX to this domain allows for functional coupling where the extrusion of Ca2+ from the mitochondria is powered, at least in part, by the entry of sodium through NaV1.5 channels. These results provide a novel entry-point into a mechanistic understanding of the intersection between electrical and structural functions of the heart.
PMID: 33342222
ISSN: 1524-4571
CID: 4726042

MRE11-RAD50-NBS1 Complex Is Sufficient to Promote Transcription by RNA Polymerase II at Double-Strand Breaks by Melting DNA Ends

Sharma, Sheetal; Anand, Roopesh; Zhang, Xuzhu; Francia, Sofia; Michelini, Flavia; Galbiati, Alessandro; Williams, Hannah; Ronato, Daryl A; Masson, Jean-Yves; Rothenberg, Eli; Cejka, Petr; d'Adda di Fagagna, Fabrizio
The MRE11-RAD50-NBS1 (MRN) complex supports the synthesis of damage-induced long non-coding RNA (dilncRNA) by RNA polymerase II (RNAPII) from DNA double-strand breaks (DSBs) by an unknown mechanism. Here, we show that recombinant human MRN and native RNAPII are sufficient to reconstitute a minimal functional transcriptional apparatus at DSBs. MRN recruits and stabilizes RNAPII at DSBs. Unexpectedly, transcription is promoted independently from MRN nuclease activities. Rather, transcription depends on the ability of MRN to melt DNA ends, as shown by the use of MRN mutants and specific allosteric inhibitors. Single-molecule FRET assays with wild-type and mutant MRN show a tight correlation between the ability to melt DNA ends and to promote transcription. The addition of RPA enhances MRN-mediated transcription, and unpaired DNA ends allow MRN-independent transcription by RNAPII. These results support a model in which MRN generates single-strand DNA ends that favor the initiation of transcription by RNAPII.
PMID: 33406426
ISSN: 2211-1247
CID: 4739012

Super-Resolution Imaging of Homologous Recombination Repair at Collapsed Replication Forks

Whelan, Donna R; Rothenberg, Eli
Single-molecule super-resolution microscopy (SRM) combines single-molecule detection with spatial resolutions tenfold improved over conventional confocal microscopy. These two key advantages make it possible to visualize individual DNA replication and damage events within the cellular context of fixed cells. This in turn engenders the ability to decipher variations between individual replicative and damage species within a single nucleus, elucidating different subpopulations of stress and repair events. Here, we describe the protocol for combining SRM with novel labeling and damage assays to characterize DNA double-strand break (DSB) induction at stressed replication forks (RFs) and subsequent repair by homologous recombination (HR). These assays enable spatiotemporal mapping of DNA damage response and repair proteins to establish their in vivo function and interactions, as well as detailed characterization of specific dysfunctions in HR caused by drugs or mutations of interest.
PMID: 32840791
ISSN: 1940-6029
CID: 4575432

Single-molecule imaging of replication fork conflicts at genomic DNA G4 structures in human cells

Lee, Wei Ting C; Gupta, Dipika; Rothenberg, Eli
DNA G-quadruplexes (G4s) are stable, non-canonical DNA secondary structures formed within guanine(G)-rich sequences. While extensively studied in vitro, evidence of the occurrence of G4s in vivo has only recently emerged. The formation of G4 structures may pose an obstacle for diverse DNA transactions including replication, which is linked to mutagenesis and genomic instability. A fundamental question in the field has been whether and how the formation of G4s is coupled to the progression of replication forks. This process has remained undefined largely due to the lack of experimental approaches capable of monitoring the presence of G4s and their association with the replication machinery in cells. Here, we describe a detailed multicolor single-molecule localization microscopy (SMLM) protocol for detecting nanoscale spatial-association of DNA G4s with the cellular replisome complex. This method offers a unique platform for visualizing the mechanisms of G4 formation at the molecular level, as well as addressing key biological questions as to the functional roles of these structures in the maintenance of genome integrity.
PMID: 34776224
ISSN: 1557-7988
CID: 5048892

Super-resolution visualization of distinct stalled and broken replication fork structures

Whelan, Donna R; Lee, Wei Ting C; Marks, Frances; Kong, Yu Tina; Yin, Yandong; Rothenberg, Eli
Endogenous genotoxic stress occurs in healthy cells due to competition between DNA replication machinery, and transcription and topographic relaxation processes. This causes replication fork stalling and regression, which can further collapse to form single-ended double strand breaks (seDSBs). Super-resolution microscopy has made it possible to directly observe replication stress and DNA damage inside cells, however new approaches to sample preparation and analysis are required. Here we develop and apply multicolor single molecule microscopy to visualize individual replication forks under mild stress from the trapping of Topoisomerase I cleavage complexes, a damage induction which closely mimics endogenous replicative stress. We observe RAD51 and RAD52, alongside RECQ1, as the first responder proteins to stalled but unbroken forks, whereas Ku and MRE11 are initially recruited to seDSBs. By implementing novel super-resolution imaging assays, we are thus able to discern closely related replication fork stress motifs and their repair pathways.
PMID: 33370257
ISSN: 1553-7404
CID: 4731652

The molecular basis and disease relevance of non-homologous DNA end joining

Zhao, Bailin; Rothenberg, Eli; Ramsden, Dale A; Lieber, Michael R
Non-homologous DNA end joining (NHEJ) is the predominant repair mechanism of any type of DNA double-strand break (DSB) during most of the cell cycle and is essential for the development of antigen receptors. Defects in NHEJ result in sensitivity to ionizing radiation and loss of lymphocytes. The most critical step of NHEJ is synapsis, or the juxtaposition of the two DNA ends of a DSB, because all subsequent steps rely on it. Recent findings show that, like the end processing step, synapsis can be achieved through several mechanisms. In this Review, we first discuss repair pathway choice between NHEJ and other DSB repair pathways. We then integrate recent insights into the mechanisms of NHEJ synapsis with updates on other steps of NHEJ, such as DNA end processing and ligation. Finally, we discuss NHEJ-related human diseases, including inherited disorders and neoplasia, which arise from rare failures at different NHEJ steps.
PMID: 33077885
ISSN: 1471-0080
CID: 4640962

Genome-wide alterations of uracil distribution patterns in human DNA upon chemotherapeutic treatments

Pálinkás, Hajnalka L; Békési, Angéla; Róna, Gergely; Pongor, LÅ‘rinc; Papp, Gábor; Tihanyi, Gergely; Holub, Eszter; Póti, Ádám; Gemma, Carolina; Ali, Simak; Morten, Michael J; Rothenberg, Eli; Pagano, Michele; Szűts, Dávid; GyÅ‘rffy, Balázs; Vértessy, Beáta G
Numerous anti-cancer drugs perturb thymidylate biosynthesis and lead to genomic uracil incorporation contributing to their antiproliferative effect. Still, it is not yet characterized if uracil incorporations have any positional preference. Here, we aimed to uncover genome-wide alterations in uracil pattern upon drug treatments in human cancer cell line models derived from HCT116. We developed a straightforward U-DNA sequencing method (U-DNA-Seq) that was combined with in situ super-resolution imaging. Using a novel robust analysis pipeline, we found broad regions with elevated probability of uracil occurrence both in treated and non-treated cells. Correlation with chromatin markers and other genomic features shows that non-treated cells possess uracil in the late replicating constitutive heterochromatic regions, while drug treatment induced a shift of incorporated uracil towards segments that are normally more active/functional. Data were corroborated by colocalization studies via dSTORM microscopy. This approach can be applied to study the dynamic spatio-temporal nature of genomic uracil.
PMID: 32956035
ISSN: 2050-084x
CID: 4605462