Searched for: person:samanm01
in-biosketch:yes
Longitudinal study of immunity to SARS-CoV2 in ocrelizumab-treated MS patients up to 2 years after COVID-19 vaccination
Kister, Ilya; Curtin, Ryan; Piquet, Amanda L; Borko, Tyler; Pei, Jinglan; Banbury, Barbara L; Bacon, Tamar E; Kim, Angie; Tuen, Michael; Velmurugu, Yogambigai; Nyovanie, Samantha; Selva, Sean; Samanovic, Marie I; Mulligan, Mark J; Patskovsky, Yury; Priest, Jessica; Cabatingan, Mark; Winger, Ryan C; Krogsgaard, Michelle; Silverman, Gregg J
OBJECTIVES/OBJECTIVE:(1) To plot the trajectory of humoral and cellular immune responses to the primary (two-dose) COVID-19 mRNA series and the third/booster dose in B-cell-depleted multiple sclerosis (MS) patients up to 2 years post-vaccination; (2) to identify predictors of immune responses to vaccination; and (3) to assess the impact of intercurrent COVID-19 infections on SARS CoV-2-specific immunity. METHODS:Sixty ocrelizumab-treated MS patients were enrolled from NYU (New York) and University of Colorado (Anschutz) MS Centers. Samples were collected pre-vaccination, and then 4, 12, 24, and 48 weeks post-primary series, and 4, 12, 24, and 48 weeks post-booster. Binding anti-Spike antibody responses were assessed with multiplex bead-based immunoassay (MBI) and electrochemiluminescence (Elecsys®, Roche Diagnostics), and neutralizing antibody responses with live-virus immunofluorescence-based microneutralization assay. Spike-specific cellular responses were assessed with IFNγ/IL-2 ELISpot (Invitrogen) and, in a subset, by sequencing complementarity determining regions (CDR)-3 within T-cell receptors (Adaptive Biotechnologies). A linear mixed-effect model was used to compare antibody and cytokine levels across time points. Multivariate analyses identified predictors of immune responses. RESULTS:The primary vaccination induced an 11- to 208-fold increase in binding and neutralizing antibody levels and a 3- to 4-fold increase in IFNγ/IL-2 responses, followed by a modest decline in antibody but not cytokine responses. Booster dose induced a further 3- to 5-fold increase in binding antibodies and 4- to 5-fold increase in IFNγ/IL-2, which were maintained for up to 1 year. Infections had a variable impact on immunity. INTERPRETATION/CONCLUSIONS:Humoral and cellular benefits of COVID-19 vaccination in B-cell-depleted MS patients were sustained for up to 2 years when booster doses were administered.
PMID: 38713096
ISSN: 2328-9503
CID: 5652462
SARS-CoV-2 inflammation durably imprints memory CD4 T cells
Gray-Gaillard, Sophie L; Solis, Sabrina M; Chen, Han M; Monteiro, Clarice; Ciabattoni, Grace; Samanovic, Marie I; Cornelius, Amber R; Williams, Tijaana; Geesey, Emilie; Rodriguez, Miguel; Ortigoza, Mila Brum; Ivanova, Ellie N; Koralov, Sergei B; Mulligan, Mark J; Herati, Ramin Sedaghat
Memory CD4 T cells are critical to human immunity, yet it is unclear whether viral inflammation during memory formation has long-term consequences. Here, we compared transcriptional and epigenetic landscapes of Spike (S)-specific memory CD4 T cells in 24 individuals whose first exposure to S was via SARS-CoV-2 infection or mRNA vaccination. Nearly 2 years after memory formation, S-specific CD4 T cells established by infection remained enriched for transcripts related to cytotoxicity and for interferon-stimulated genes, likely because of a chromatin accessibility landscape altered by inflammation. Moreover, S-specific CD4 T cells primed by infection had reduced proliferative capacity in vitro relative to vaccine-primed cells. Furthermore, the transcriptional state of S-specific memory CD4 T cells was minimally altered by booster immunization and/or breakthrough infection. Thus, infection-associated inflammation durably imprints CD4 T cell memory, which affects the function of these cells and may have consequences for long-term immunity.
PMID: 38905326
ISSN: 2470-9468
CID: 5672432
The immunodominance of antigenic site Sb on the H1 influenza virus hemagglutinin increases with high immunoglobulin titers of the cohorts and with young age, but not sex
MartÃnez, Jose L; Lemus, Nicholas; Lai, Tsoi Ying; Mishra, Mitali; González-DomÃnguez, Irene; Puente-Massaguer, Eduard; Loganathan, Madhumathi; Francis, Benjamin; Samanovic, Marie I; Krammer, Florian; Mulligan, Mark J; Simon, Viviana; Palese, Peter; Sun, Weina
The head domain of the hemagglutinin of influenza viruses plays a dominant role in the antibody response due to the presence of immunodominant antigenic sites that are the main targets of host neutralizing antibodies. For the H1 hemagglutinin, five major antigenic sites defined as Sa, Sb, Ca1, Ca2, and Cb have been described. Although previous studies have focused on defining the hierarchy of the antigenic sites of the hemagglutinin in different human cohorts, it is still unclear if the immunodominance profile of the antigenic sites might change with the antibody levels of individuals or if other demographic factors (such as exposure history, sex, or age) could also influence the importance of the antigenic sites. The major antigenic sites of influenza viruses hemagglutinins are responsible for eliciting most of the hemagglutination inhibition antibodies in the host. To determine the antibody prevalence towards each major antigenic site, we evaluated the hemagglutination inhibition against a panel of mutant H1 viruses, each one lacking one of the "classic" antigenic sites. Our results showed that the individuals from the Stop Flu NYU cohort had an immunodominant response towards the sites Sb and Ca2 of H1 hemagglutinin. A simple logistic regression analysis of the immunodominance profiles and the hemagglutination inhibition titers displayed by each donor revealed that individuals with high hemagglutination inhibition titers against the wild-type influenza virus exhibited higher probabilities of displaying an immunodominance profile dominated by Sb, followed by Ca2 (Sb > Ca2 profile), while individuals with low hemagglutination inhibition titers presented a higher chance of displaying an immunodominance profile in which Sb and Ca2 presented the same level of immunodominance (Sb = Ca2 profile). Finally, while age exhibited an influence on the immunodominance of the antigenic sites, biological sex was not related to displaying a specific immunodominance profile.
PMID: 38627145
ISSN: 1873-2518
CID: 5655842
mRNA COVID-19 vaccine elicits potent adaptive immune response without the acute inflammation of SARS-CoV-2 infection
Ivanova, Ellie N.; Shwetar, Jasmine; Devlin, Joseph C.; Buus, Terkild B.; Gray-Gaillard, Sophie; Koide, Akiko; Cornelius, Amber; Samanovic, Marie I.; Herrera, Alberto; Mimitou, Eleni P.; Zhang, Chenzhen; Karmacharya, Trishala; Desvignes, Ludovic; Ødum, Niels; Smibert, Peter; Ulrich, Robert J.; Mulligan, Mark J.; Koide, Shohei; Ruggles, Kelly V.; Herati, Ramin S.; Koralov, Sergei B.
SARS-CoV-2 infection and vaccination elicit potent immune responses. Our study presents a comprehensive multimodal single-cell analysis of blood from COVID-19 patients and healthy volunteers receiving the SARS-CoV-2 vaccine and booster. We profiled immune responses via transcriptional analysis and lymphocyte repertoire reconstruction. COVID-19 patients displayed an enhanced interferon signature and cytotoxic gene upregulation, absent in vaccine recipients. B and T cell repertoire analysis revealed clonal expansion among effector cells in COVID-19 patients and memory cells in vaccine recipients. Furthermore, while clonal αβ T cell responses were observed in both COVID-19 patients and vaccine recipients, expansion of clonal γδ T cells was found only in infected individuals. Our dataset enables side-by-side comparison of immune responses to infection versus vaccination, including clonal B and T cell responses. Our comparative analysis shows that vaccination induces a robust, durable clonal B and T cell responses, without the severe inflammation associated with infection.
SCOPUS:85179086246
ISSN: 2589-0042
CID: 5620862
Antibody Titers against Mpox Virus after Vaccination [Letter]
Kottkamp, Angelica C; Samanovic, Marie I; Duerr, Ralf; Oom, Aaron L; Belli, Hayley M; Zucker, Jane R; Rosen, Jennifer B; Mulligan, Mark J; ,
PMID: 38091537
ISSN: 1533-4406
CID: 5589312
Generation of quality-controlled SARS-CoV-2 variant stocks
de Vries, Maren; Ciabattoni, Grace O; Rodriguez-Rodriguez, Bruno A; Crosse, Keaton M; Papandrea, Dominick; Samanovic, Marie I; Dimartino, Dacia; Marier, Christian; Mulligan, Mark J; Heguy, Adriana; Desvignes, Ludovic; Duerr, Ralf; Dittmann, Meike
One of the main challenges in the fight against coronavirus disease 2019 (COVID-19) stems from the ongoing evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) into multiple variants. To address this hurdle, research groups around the world have independently developed protocols to isolate these variants from clinical samples. These isolates are then used in translational and basic research-for example, in vaccine development, drug screening or characterizing SARS-CoV-2 biology and pathogenesis. However, over the course of the COVID-19 pandemic, we have learned that the introduction of artefacts during both in vitro isolation and subsequent propagation to virus stocks can lessen the validity and reproducibility of data. We propose a rigorous pipeline for the generation of high-quality SARS-CoV-2 variant clonal isolates that minimizes the acquisition of mutations and introduces stringent controls to detect them. Overall, the process includes eight stages: (i) cell maintenance, (ii) isolation of SARS-CoV-2 from clinical specimens, (iii) determination of infectious virus titers by plaque assay, (iv) clonal isolation by plaque purification, (v) whole-virus-genome deep-sequencing, (vi and vii) amplification of selected virus clones to master and working stocks and (viii) sucrose purification. This comprehensive protocol will enable researchers to generate reliable SARS-CoV-2 variant inoculates for in vitro and in vivo experimentation and will facilitate comparisons and collaborative work. Quality-controlled working stocks for most applications can be generated from acquired biorepository virus within 1 month. An additional 5-8 d are required when virus is isolated from clinical swab material, and another 6-7 d is needed for sucrose-purifying the stocks.
PMID: 37833423
ISSN: 1750-2799
CID: 5604402
Selective adaptation of SARS-CoV-2 Omicron under booster vaccine pressure: a multicentre observational study
Duerr, Ralf; Dimartino, Dacia; Marier, Christian; Zappile, Paul; Wang, Guiqing; François, Fritz; Ortigoza, Mila B; Iturrate, Eduardo; Samanovic, Marie I; Mulligan, Mark J; Heguy, Adriana
BACKGROUND:High rates of vaccination and natural infection drive immunity and redirect selective viral adaptation. Updated boosters are installed to cope with drifted viruses, yet data on adaptive evolution under increasing immune pressure in a real-world situation are lacking. METHODS:Cross-sectional study to characterise SARS-CoV-2 mutational dynamics and selective adaptation over >1 year in relation to vaccine status, viral phylogenetics, and associated clinical and demographic variables. FINDINGS/RESULTS:The study of >5400 SARS-CoV-2 infections between July 2021 and August 2022 in metropolitan New York portrayed the evolutionary transition from Delta to Omicron BA.1-BA.5 variants. Booster vaccinations were implemented during the Delta wave, yet booster breakthrough infections and SARS-CoV-2 re-infections were almost exclusive to Omicron. In adjusted logistic regression analyses, BA.1, BA.2, and BA.5 had a significant growth advantage over co-occurring lineages in the boosted population, unlike BA.2.12.1 or BA.4. Selection pressure by booster shots translated into diffuse adaptive evolution in Delta spike, contrasting with strong, receptor-binding motif-focused adaptive evolution in BA.2-BA.5 spike (Fisher Exact tests; non-synonymous/synonymous mutation rates per site). Convergent evolution has become common in Omicron, engaging spike positions crucial for immune escape, receptor binding, or cleavage. INTERPRETATION/CONCLUSIONS:Booster shots are required to cope with gaps in immunity. Their discriminative immune pressure contributes to their effectiveness but also requires monitoring of selective viral adaptation processes. Omicron BA.2 and BA.5 had a selective advantage under booster vaccination pressure, contributing to the evolution of BA.2 and BA.5 sublineages and recombinant forms that predominate in 2023. FUNDING/BACKGROUND:The study was supported by NYU institutional funds and partly by the Cancer Center Support Grant P30CA016087 at the Laura and Isaac Perlmutter Cancer Center.
PMCID:10623172
PMID: 37866115
ISSN: 2352-3964
CID: 5609742
Multimodal single-cell datasets characterize antigen-specific CD8+ T cells across SARS-CoV-2 vaccination and infection
Zhang, Bingjie; Upadhyay, Rabi; Hao, Yuhan; Samanovic, Marie I; Herati, Ramin S; Blair, John D; Axelrad, Jordan; Mulligan, Mark J; Littman, Dan R; Satija, Rahul
The immune response to SARS-CoV-2 antigen after infection or vaccination is defined by the durable production of antibodies and T cells. Population-based monitoring typically focuses on antibody titer, but there is a need for improved characterization and quantification of T cell responses. Here, we used multimodal sequencing technologies to perform a longitudinal analysis of circulating human leukocytes collected before and after immunization with the mRNA vaccine BNT162b2. Our data indicated distinct subpopulations of CD8+ T cells, which reliably appeared 28 days after prime vaccination. Using a suite of cross-modality integration tools, we defined their transcriptome, accessible chromatin landscape and immunophenotype, and we identified unique biomarkers within each modality. We further showed that this vaccine-induced population was SARS-CoV-2 antigen-specific and capable of rapid clonal expansion. Moreover, we identified these CD8+ T cell populations in scRNA-seq datasets from COVID-19 patients and found that their relative frequency and differentiation outcomes were predictive of subsequent clinical outcomes.
PMID: 37735591
ISSN: 1529-2916
CID: 5606242
Immune response, phenotyping and molecular graft surveillance in kidney transplant recipients following severe acute respiratory syndrome coronavirus 2 vaccination
Ali, Nicole M; Herati, Ramin S; Mehta, Sapna A; Leonard, Jeanette; Miles, Jake; Lonze, Bonnie E; DiMaggio, Charles; Tatapudi, Vasishta S; Stewart, Zoe A; Alnazari, Nasser; Neumann, Henry J; Thomas, Jeffrey; Cartiera, Katarzyna; Weldon, Elaina; Michael, Jennifer; Hickson, Christopher; Whiteson, Harris; Khalil, Karen; Stern, Jeffrey M; Allen, Joseph R; Tuen, Michael; Gray-Gaillard, Sophie L; Solis, Sabrina M; Samanovic, Marie I; Mulligan, Mark J; Montgomery, Robert A
BACKGROUND:Understanding immunogenicity and alloimmune risk following severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccination in kidney transplant recipients is imperative to understanding the correlates of protection and to inform clinical guidelines. METHODS:We studied 50 kidney transplant recipients following SARS-CoV-2 vaccination and quantified their anti-spike protein antibody, donor-derived cell-free DNA (dd-cfDNA), gene expression profiling (GEP), and alloantibody formation. RESULTS:Participants were stratified using nucleocapsid testing as either SARS-CoV-2-naïve or experienced prior to vaccination. One of 34 (3%) SARS-CoV-2 naïve participants developed anti-spike protein antibodies. In contrast, the odds ratio for the association of a prior history of SARS-CoV-2 infection with vaccine response was 18.3 (95% confidence interval 3.2, 105.0, p < 0.01). Pre- and post-vaccination levels did not change for median dd-cfDNA (0.23% vs. 0.21% respectively, p = 0.13), GEP scores (9.85 vs. 10.4 respectively, p = 0.45), calculated panel reactive antibody, de-novo donor specific antibody status, or estimated glomerular filtration rate. CONCLUSIONS:SARS-CoV-2 vaccines do not appear to trigger alloimmunity in kidney transplant recipients. The degree of vaccine immunogenicity was associated most strongly with a prior history of SARS-CoV-2 infection.
PMID: 37707287
ISSN: 1399-3062
CID: 5593762
Discrete immune response signature to SARS-CoV-2 mRNA vaccination versus infection
Ivanova, Ellie N; Devlin, Joseph C; Buus, Terkild B; Koide, Akiko; Cornelius, Amber; Samanovic, Marie I; Herrera, Alberto; Zhang, Chenzhen; Desvignes, Ludovic; Odum, Niels; Ulrich, Robert; Mulligan, Mark J; Koide, Shohei; Ruggles, Kelly V; Herati, Ramin S; Koralov, Sergei B
Both SARS-CoV-2 infection and vaccination elicit potent immune responses. A number of studies have described immune responses to SARS-CoV-2 infection. However, beyond antibody production, immune responses to COVID-19 vaccines remain largely uncharacterized. Here, we performed multimodal single-cell sequencing on peripheral blood of patients with acute COVID-19 and healthy volunteers before and after receiving the SARS-CoV-2 BNT162b2 mRNA vaccine to compare the immune responses elicited by the virus and by this vaccine. Phenotypic and transcriptional profiling of immune cells, coupled with reconstruction of the B and T cell antigen receptor rearrangement of individual lymphocytes, enabled us to characterize and compare the host responses to the virus and to defined viral antigens. While both infection and vaccination induced robust innate and adaptive immune responses, our analysis revealed significant qualitative differences between the two types of immune challenges. In COVID-19 patients, immune responses were characterized by a highly augmented interferon response which was largely absent in vaccine recipients. Increased interferon signaling likely contributed to the observed dramatic upregulation of cytotoxic genes in the peripheral T cells and innate-like lymphocytes in patients but not in immunized subjects. Analysis of B and T cell receptor repertoires revealed that while the majority of clonal B and T cells in COVID-19 patients were effector cells, in vaccine recipients clonally expanded cells were primarily circulating memory cells. Importantly, the divergence in immune subsets engaged, the transcriptional differences in key immune populations, and the differences in maturation of adaptive immune cells revealed by our analysis have far-ranging implications for immunity to this novel pathogen.
PMCID:8077568
PMID: 33907755
ISSN: n/a
CID: 4852132