Try a new search

Format these results:

Searched for:

person:schlam01

in-biosketch:true

Total Results:

124


Analysis of phospholipid synthesis in mitochondria

Montesinos, Jorge; Area-Gomez, Estela; Schlame, Michael
Mitochondria and their associated membranes actively participate in biosynthesis, trafficking, and degradation of cellular phospholipids. Two crucial lipid biosynthetic activities of mitochondria include (i) the decarboxylation of phosphatidylserine to phosphatidylethanolamine and (ii) the de novo synthesis of cardiolipin. Here we describe protocols to measure these two activities, applying isotope-labeled or exogenous substrates in combination with thin-layer chromatography or mass spectrometry.
PMID: 32183965
ISSN: 0091-679x
CID: 4352632

A Critical Appraisal of the Tafazzin Knockdown Mouse Model of Barth Syndrome: What Have We Learned About Pathogenesis and Potential Treatments?

Ren, Mindong; Miller, Paighton Ciara; Schlame, Michael; Phoon, Colin K L
Pediatric heart failure remains poorly understood, distinct in many aspects from adult heart failure. Limited data point to roles of altered mitochondrial functioning and in particular, changes in mitochondrial lipids, especially cardiolipin. Barth syndrome is a mitochondrial disorder caused by tafazzin mutations that lead to abnormal cardiolipin profiles. Patients are afflicted by cardiomyopathy, skeletal myopathy, neutropenia, and growth delay. A mouse model of Barth syndrome was developed a decade ago, which relies on a doxycycline-inducible shRNA to knock down expression of tafazzin mRNA ("TAZKD"). Our objective was to review published data from the TAZKD mouse to determine its contributions to our pathogenetic understanding of, and potential treatment strategies for, Barth syndrome. In regard to the clinical syndrome, the reported physiological, biochemical, and ultrastructural abnormalities of the mouse model mirror those in Barth patients. Using this model, the PPAR pan-agonist bezafibrate has been suggested as potential therapy because it ameliorated the cardiomyopathy in TAZKD mice, while increasing mitochondrial biogenesis. A clinical trial is now underway to test bezafibrate in Barth syndrome patients. Thus, the TAZKD mouse model of Barth syndrome has led to important insights into disease pathogenesis and therapeutic targets, which can potentially translate to pediatric heart failure.
PMID: 31603701
ISSN: 1522-1539
CID: 4130192

Mitochondrial cristae as insulated transformers of metabolic energy

Schlame, Michael
The mitochondrial inner membrane consists of the inner boundary membrane and invaginations called cristae, which differ in protein composition and likely have distinct functions. In this issue of The EMBO Journal, Wolf et al (2019) report that the cristae carry a higher membrane potential than the intervening boundary membranes. Their data suggest electro-chemical discontinuity among segments of the inner membrane, implying that individual cristae may operate with some degree of independence.
PMID: 31617600
ISSN: 1460-2075
CID: 4140492

Plasmalogen loss caused by remodeling deficiency in mitochondria

Kimura, Tomohiro; Kimura, Atsuko K; Ren, Mindong; Monteiro, Vernon; Xu, Yang; Berno, Bob; Schlame, Michael; Epand, Richard M
Lipid homeostasis is crucial in human health. Barth syndrome (BTHS), a life-threatening disease typically diagnosed with cardiomyopathy and neutropenia, is caused by mutations in the mitochondrial transacylase tafazzin. By high-resolution 31P nuclear magnetic resonance (NMR) with cryoprobe technology, recently we found a dramatic loss of choline plasmalogen in the tafazzin-knockdown (TAZ-KD) mouse heart, besides observing characteristic cardiolipin (CL) alterations in BTHS. In inner mitochondrial membrane where tafazzin locates, CL and diacyl phosphatidylethanolamine are known to be essential via lipid-protein interactions reflecting their cone shape for integrity of respiratory chain supercomplexes and cristae ultrastructure. Here, we investigate the TAZ-KD brain, liver, kidney, and lymphoblast from patients compared with controls. We identified common yet markedly cell type-dependent losses of ethanolamine plasmalogen as the dominant plasmalogen class therein. Tafazzin function thus critically relates to homeostasis of plasmalogen, which in the ethanolamine class has conceivably analogous and more potent molecular functions in mitochondria than diacyl phosphatidylethanolamine. The present discussion of a loss of plasmalogen-protein interaction applies to other diseases with mitochondrial plasmalogen loss and aberrant forms of this organelle, including Alzheimer's disease.
PMID: 31434794
ISSN: 2575-1077
CID: 4046892

Cardiolipin-induced activation of pyruvate dehydrogenase links mitochondrial lipid biosynthesis to TCA cycle function

Li, Yiran; Lou, Wenjia; Raja, Vaishnavi; Denis, Simone; Yu, Wenxi; Schmidtke, Michael W; Reynolds, Christian A; Schlame, Michael; Houtkooper, Riekelt H; Greenberg, Miriam L
Cardiolipin[MS1]  (CL) is the signature phospholipid of mitochondrial membranes. Although it has long been known that CL plays an important role in mitochondrial bioenergetics, recent evidence in the yeast model indicates that CL is also essential for intermediary metabolism. To gain insight into the function of CL in energy metabolism in mammalian cells, here we analyzed the metabolic flux of [U-13C]glucose in a mouse C2C12 myoblast cell line, TAZ-KO, which is CL-deficient because of a CRISPR/Cas9-mediated knockout of the CL-remodeling enzyme tafazzin (TAZ). TAZ-KO cells exhibited decreased flux of [U-13C]glucose to [13C]acetyl-CoA and M2 and M4 isotopomers of TCA cycle intermediates. Activity of pyruvate carboxylase (PC), the predominant enzyme for anaplerotic replenishing of the TCA cycle, was elevated in the TAZ-KO cells, which also exhibited increased sensitivity to the PC inhibitor phenylacetate. We attributed a decreased carbon flux from glucose to acetyl-CoA in the TAZ-KO cells to a ~50% decrease in pyruvate dehydrogenase (PDH) activity, which was observed in both TAZ-KO cells and cardiac tissue from TAZ-KO mice. Protein-lipid overlay experiments revealed that PDH binds to CL, and supplementing digitonin-solubilized TAZ-KO mitochondria with CL restored PDH activity to wildtype levels. Mitochondria from TAZ-KO cells exhibited an increase in phosphorylated PDH, levels of which were reduced in the presence of supplemented CL. These findings indicate that CL is required for optimal PDH activation, generation of acetyl-CoA, and TCA cycle function, findings that link the key mitochondrial lipid CL to TCA cycle function and energy metabolism.
PMID: 31186346
ISSN: 1083-351x
CID: 3955462

Assembly of the complexes of oxidative phosphorylation triggers the remodeling of cardiolipin

Xu, Yang; Anjaneyulu, Murari; Donelian, Alec; Yu, Wenxi; Greenberg, Miriam L; Ren, Mindong; Owusu-Ansah, Edward; Schlame, Michael
Cardiolipin (CL) is a mitochondrial phospholipid with a very specific and functionally important fatty acid composition, generated by tafazzin. However, in vitro tafazzin catalyzes a promiscuous acyl exchange that acquires specificity only in response to perturbations of the physical state of lipids. To identify the process that imposes acyl specificity onto CL remodeling in vivo, we analyzed a series of deletions and knockdowns in Saccharomyces cerevisiae and Drosophila melanogaster, including carriers, membrane homeostasis proteins, fission-fusion proteins, cristae-shape controlling and MICOS proteins, and the complexes I-V. Among those, only the complexes of oxidative phosphorylation (OXPHOS) affected the CL composition. Rather than any specific complex, it was the global impairment of the OXPHOS system that altered CL and at the same time shortened its half-life. The knockdown of OXPHOS expression had the same effect on CL as the knockdown of tafazzin in Drosophila flight muscles, including a change in CL composition and the accumulation of monolyso-CL. Thus, the assembly of OXPHOS complexes induces CL remodeling, which, in turn, leads to CL stabilization. We hypothesize that protein crowding in the OXPHOS system imposes packing stress on the lipid bilayer, which is relieved by CL remodeling to form tightly packed lipid-protein complexes.
PMID: 31110016
ISSN: 1091-6490
CID: 3920362

Extramitochondrial cardiolipin suggests a novel function of mitochondria in spermatogenesis

Ren, Mindong; Xu, Yang; Erdjument-Bromage, Hediye; Donelian, Alec; Phoon, Colin K L; Terada, Naohiro; Strathdee, Douglas; Neubert, Thomas A; Schlame, Michael
Mitochondria contain cardiolipin (CL), an organelle-specific phospholipid that carries four fatty acids with a strong preference for unsaturated chains. Unsaturation is essential for the stability and for the function of mitochondrial CL. Surprisingly, we found tetrapalmitoyl-CL (TPCL), a fully saturated species, in the testes of humans and mice. TPCL was absent from other mouse tissues but was the most abundant CL species in testicular germ cells. Most intriguingly, TPCL was not localized in mitochondria but was in other cellular membranes even though mitochondrial CL was the substrate from which TPCL was synthesized. During spermiogenesis, TPCL became associated with the acrosome, a sperm-specific organelle, along with a subset of authentic mitochondrial proteins, including Ant4, Suox, and Spata18. Our data suggest that mitochondria-derived membranes are assembled into the acrosome, challenging the concept that this organelle is strictly derived from the Golgi apparatus and revealing a novel function of mitochondria.
PMID: 30914420
ISSN: 1540-8140
CID: 3777022

Loss of tafazzin results in decreased myoblast differentiation in C2C12 cells: A myoblast model of Barth syndrome and cardiolipin deficiency

Lou, Wenjia; Reynolds, Christian A; Li, Yiran; Liu, Jenney; Hüttemann, Maik; Schlame, Michael; Stevenson, David; Strathdee, Douglas; Greenberg, Miriam L
Barth syndrome (BTHS) is an X-linked genetic disorder resulting from mutations in the tafazzin gene (TAZ), which encodes the transacylase that remodels the mitochondrial phospholipid cardiolipin (CL). While most BTHS patients exhibit pronounced skeletal myopathy, the mechanisms linking defective CL remodeling and skeletal myopathy have not been determined. In this study, we constructed a CRISPR-generated stable tafazzin knockout (TAZ-KO) C2C12 myoblast cell line. TAZ-KO cells exhibit mitochondrial deficits consistent with other models of BTHS, including accumulation of monolyso-CL (MLCL), decreased mitochondrial respiratory, and increased mitochondrial ROS production. Additionally, tafazzin-deficiency was associated with impairment of myocyte differentiation. Future studies should determine whether alterations in myogenic determination contribute to the skeletal myopathy observed in BTHS patients. The BTHS myoblast model will enable studies to elucidate mechanisms by which defective CL remodeling interferes with normal myocyte differentiation and skeletal muscle ontogenesis.
PMCID:5976547
PMID: 29694924
ISSN: 0006-3002
CID: 3053122

Substantial Decrease in Plasmalogen in the Heart Associated with Tafazzin Deficiency

Kimura, Tomohiro; Kimura, Atsuko K; Ren, Mindong; Berno, Bob; Xu, Yang; Schlame, Michael; Epand, Richard M
Tafazzin is the mitochondrial enzyme that catalyzes transacylation between a phospholipid and a lysophospholipid in remodeling. Mutations in tafazzin cause Barth syndrome, a potentially life-threatening disease with the major symptom being cardiomyopathy. In the tafazzin-deficient heart, cardiolipin (CL) acyl chains become abnormally heterogeneous unlike those in the normal heart with a single dominant linoleoyl species, tetralinoleoyl CL. In addition, the amount of CL decreases and monolysocardiolipin (MLCL) accumulates. Here we determine using high-resolution 31P nuclear magnetic resonance with cryoprobe technology the fundamental phospholipid composition, including the major but oxidation-labile plasmalogens, in the tafazzin-knockdown (TAZ-KD) mouse heart as a model of Barth syndrome. In addition to confirming a lower level of CL (6.4 ± 0.1 → 2.0 ± 0.4 mol % of the total phospholipid) and accumulation of MLCL (not detected → 3.3 ± 0.5 mol %) in the TAZ-KD, we found a substantial reduction in the level of plasmenylcholine (30.8 ± 2.8 → 18.1 ± 3.1 mol %), the most abundant phospholipid in the control wild type. A quantitative Western blot revealed that while the level of peroxisomes, where early steps of plasmalogen synthesis take place, was normal in the TAZ-KD model, expression of Far1 as a rate-determining enzyme in plasmalogen synthesis was dramatically upregulated by 8.3 (±1.6)-fold to accelerate the synthesis in response to the reduced level of plasmalogen. We confirmed lyso-plasmenylcholine or plasmenylcholine is a substrate of purified tafazzin for transacylation with CL or MLCL, respectively. Our results suggest that plasmenylcholine, abundant in linoleoyl species, is important in remodeling CL in the heart. Tafazzin deficiency thus has a major impact on the cardiac plasmenylcholine level and thereby its functions.
PMCID:5893435
PMID: 29557170
ISSN: 1520-4995
CID: 3044482

Intraoperative Two- and Three-Dimensional Transesophageal Echocardiography in Combined Myectomy-Mitral Operations for Hypertrophic Cardiomyopathy

Nampiaparampil, Robert G; Swistel, Daniel G; Schlame, Michael; Saric, Muhamed; Sherrid, Mark V
Transesophageal echocardiography is essential in guiding the surgical approach for patients with obstructive hypertrophic cardiomyopathy. Septal hypertrophy, elongated mitral valve leaflets, and abnormalities of the subvalvular apparatus are prominent features, all of which may contribute to left ventricular outflow tract obstruction. Surgery aims to alleviate the obstruction via an extended myectomy, often with an intervention on the mitral valve and subvalvular apparatus. The goal of intraoperative echocardiography is to assess the anatomic pathology and pathophysiology in order to achieve a safe intraoperative course and a successful repair. This guide summarizes the systematic evaluation of these patients to determine the best surgical plan.
PMID: 29502589
ISSN: 1097-6795
CID: 2974652