Try a new search

Format these results:

Searched for:

person:shopsb01

in-biosketch:true

Total Results:

62


Decreased production of epithelial-derived antimicrobial molecules at mucosal barriers during early life

Lokken-Toyli, Kristen L; de Steenhuijsen Piters, Wouter A A; Zangari, Tonia; Martel, Rachel; Kuipers, Kirsten; Shopsin, Bo; Loomis, Cynthia; Bogaert, Debby; Weiser, Jeffrey N
Young age is a risk factor for respiratory and gastrointestinal infections. Here, we compared infant and adult mice to identify age-dependent mechanisms that drive susceptibility to mucosal infections during early life. Transcriptional profiling of the upper respiratory tract (URT) epithelium revealed significant dampening of early life innate mucosal defenses. Epithelial-mediated production of the most abundant antimicrobial molecules, lysozyme, and lactoferrin, and the polymeric immunoglobulin receptor (pIgR), responsible for IgA transcytosis, was expressed in an age-dependent manner. This was attributed to delayed functional development of serous cells. Absence of epithelial-derived lysozyme and the pIgR was also observed in the small intestine during early life. Infection of infant mice with lysozyme-susceptible strains of Streptococcus pneumoniae or Staphylococcus aureus in the URT or gastrointestinal tract, respectively, demonstrated an age-dependent regulation of lysozyme enzymatic activity. Lysozyme derived from maternal milk partially compensated for the reduction in URT lysozyme activity of infant mice. Similar to our observations in mice, expression of lysozyme and the pIgR in nasopharyngeal samples collected from healthy human infants during the first year of life followed an age-dependent regulation. Thus, a global pattern of reduced antimicrobial and IgA-mediated defenses may contribute to increased susceptibility of young children to mucosal infections.
PMID: 34465896
ISSN: 1935-3456
CID: 4998412

Microbial signatures in the lower airways of mechanically ventilated COVID-19 patients associated with poor clinical outcome

Sulaiman, Imran; Chung, Matthew; Angel, Luis; Tsay, Jun-Chieh J; Wu, Benjamin G; Yeung, Stephen T; Krolikowski, Kelsey; Li, Yonghua; Duerr, Ralf; Schluger, Rosemary; Thannickal, Sara A; Koide, Akiko; Rafeq, Samaan; Barnett, Clea; Postelnicu, Radu; Wang, Chang; Banakis, Stephanie; Pérez-Pérez, Lizzette; Shen, Guomiao; Jour, George; Meyn, Peter; Carpenito, Joseph; Liu, Xiuxiu; Ji, Kun; Collazo, Destiny; Labarbiera, Anthony; Amoroso, Nancy; Brosnahan, Shari; Mukherjee, Vikramjit; Kaufman, David; Bakker, Jan; Lubinsky, Anthony; Pradhan, Deepak; Sterman, Daniel H; Weiden, Michael; Heguy, Adriana; Evans, Laura; Uyeki, Timothy M; Clemente, Jose C; de Wit, Emmie; Schmidt, Ann Marie; Shopsin, Bo; Desvignes, Ludovic; Wang, Chan; Li, Huilin; Zhang, Bin; Forst, Christian V; Koide, Shohei; Stapleford, Kenneth A; Khanna, Kamal M; Ghedin, Elodie; Segal, Leopoldo N
Respiratory failure is associated with increased mortality in COVID-19 patients. There are no validated lower airway biomarkers to predict clinical outcome. We investigated whether bacterial respiratory infections were associated with poor clinical outcome of COVID-19 in a prospective, observational cohort of 589 critically ill adults, all of whom required mechanical ventilation. For a subset of 142 patients who underwent bronchoscopy, we quantified SARS-CoV-2 viral load, analysed the lower respiratory tract microbiome using metagenomics and metatranscriptomics and profiled the host immune response. Acquisition of a hospital-acquired respiratory pathogen was not associated with fatal outcome. Poor clinical outcome was associated with lower airway enrichment with an oral commensal (Mycoplasma salivarium). Increased SARS-CoV-2 abundance, low anti-SARS-CoV-2 antibody response and a distinct host transcriptome profile of the lower airways were most predictive of mortality. Our data provide evidence that secondary respiratory infections do not drive mortality in COVID-19 and clinical management strategies should prioritize reducing viral replication and maximizing host responses to SARS-CoV-2.
PMID: 34465900
ISSN: 2058-5276
CID: 4998422

Gut microbiome dysbiosis during COVID-19 is associated with increased risk for bacteremia and microbial translocation

Venzon, Mericien; Bernard-Raichon, Lucie; Klein, Jon; Axelrad, Jordan; Hussey, Grant; Sullivan, Alexis; Casanovas-Massana, Arnau; Noval, Maria; Valero-Jimenez, Ana; Gago, Juan; Wilder, Evan; Team, Yale Impact Research; Iwasaki, Akiko; Thorpe, Lorna; Littman, Dan; Dittmann, Meike; Stapleford, Kenneth; Shopsin, Bo; Torres, Victor; Ko, Albert; Cadwell, Ken; Schluter, Jonas
The microbial populations in the gut microbiome have recently been associated with COVID-19 disease severity. However, a causal impact of the gut microbiome on COVID-19 patient health has not been established. Here we provide evidence that gut microbiome dysbiosis is associated with translocation of bacteria into the blood during COVID-19, causing life-threatening secondary infections. Antibiotics and other treatments during COVID-19 can potentially confound microbiome associations. We therefore first demonstrate that the gut microbiome is directly affected by SARS-CoV-2 infection in a dose-dependent manner in a mouse model, causally linking viral infection and gut microbiome dysbiosis. Comparison with stool samples collected from 97 COVID-19 patients at two different clinical sites also revealed substantial gut microbiome dysbiosis, paralleling our observations in the animal model. Specifically, we observed blooms of opportunistic pathogenic bacterial genera known to include antimicrobial-resistant species in hospitalized COVID-19 patients. Analysis of blood culture results testing for secondary microbial bloodstream infections with paired microbiome data obtained from these patients suggest that bacteria translocate from the gut into the systemic circulation of COVID-19 patients. These results are consistent with a direct role for gut microbiome dysbiosis in enabling dangerous secondary infections during COVID 19.
PMCID:8328072
PMID: 34341786
ISSN: n/a
CID: 5080792

Retapamulin Activity Against Pediatric Strains of Mupirocin-resistant Methicillin-resistant Staphylococcus aureus

Patel, Ami B; Lighter, Jennifer; Fulmer, Yi; Copin, Richard; Ratner, Adam J; Shopsin, Bo
Retapamulin activity against 53 isolates obtained from a mupirocin-resistant community-acquired methicillin-resistant Staphylococcus aureus pediatric disease cluster was evaluated using broth microdilution. All strains were susceptible to retapamulin with minimum inhibitory concentrations ≤ 0.5 μg/mL. DNA sequence analysis of rplC and cfr identified one rplC strain variant that did not demonstrate reduced phenotypic susceptibility to retapamulin. These results demonstrate that retapamulin may be a useful alternative therapy for mupirocin-resistant community-acquired methicillin-resistant S. aureus, especially in disease clusters.
PMID: 33657598
ISSN: 1532-0987
CID: 4905682

Genetic variation of staphylococcal LukAB toxin determines receptor tropism

Perelman, Sofya S; James, David B A; Boguslawski, Kristina M; Nelson, Chase W; Ilmain, Juliana K; Zwack, Erin E; Prescott, Rachel A; Mohamed, Adil; Tam, Kayan; Chan, Rita; Narechania, Apurva; Pawline, Miranda B; Vozhilla, Nikollaq; Moustafa, Ahmed M; Kim, Sang Y; Dittmann, Meike; Ekiert, Damian C; Bhabha, Gira; Shopsin, Bo; Planet, Paul J; Koralov, Sergei B; Torres, Victor J
Staphylococcus aureus has evolved into diverse lineages, known as clonal complexes (CCs), which exhibit differences in the coding sequences of core virulence factors. Whether these alterations affect functionality is poorly understood. Here, we studied the highly polymorphic pore-forming toxin LukAB. We discovered that the LukAB toxin variants produced by S. aureus CC30 and CC45 kill human phagocytes regardless of whether CD11b, the previously established LukAB receptor, is present, and instead target the human hydrogen voltage-gated channel 1 (HVCN1). Biochemical studies identified the domain within human HVCN1 that drives LukAB species specificity, enabling the generation of humanized HVCN1 mice with enhanced susceptibility to CC30 LukAB and to bloodstream infection caused by CC30 S. aureus strains. Together, this work advances our understanding of an important S. aureus toxin and underscores the importance of considering genetic variation in characterizing virulence factors and understanding the tug of war between pathogens and the host.
PMID: 33875847
ISSN: 2058-5276
CID: 4846982

Microbial signatures in the lower airways of mechanically ventilated COVID19 patients associated with poor clinical outcome

Sulaiman, Imran; Chung, Matthew; Angel, Luis; Koralov, Sergei; Wu, Benjamin; Yeung, Stephen; Krolikowski, Kelsey; Li, Yonghua; Duerr, Ralf; Schluger, Rosemary; Thannickal, Sara; Koide, Akiko; Rafeq, Samaan; Barnett, Clea; Postelnicu, Radu; Wang, Chang; Banakis, Stephanie; Perez-Perez, Lizzette; Jour, George; Shen, Guomiao; Meyn, Peter; Carpenito, Joseph; Liu, Xiuxiu; Ji, Kun; Collazo, Destiny; Labarbiera, Anthony; Amoroso, Nancy; Brosnahan, Shari; Mukherjee, Vikramjit; Kaufman, David; Bakker, Jan; Lubinsky, Anthony; Pradhan, Deepak; Sterman, Daniel; Heguy, Adriana; Uyeki, Timothy; Clemente, Jose; de Wit, Emmie; Schmidt, Ann Marie; Shopsin, Bo; Desvignes, Ludovic; Wang, Chan; Li, Huilin; Zhang, Bin; Forst, Christian; Koide, Shohei; Stapleford, Kenneth; Khanna, Kamal; Ghedin, Elodie; Weiden, Michael; Segal, Leopoldo
Mortality among patients with COVID-19 and respiratory failure is high and there are no known lower airway biomarkers that predict clinical outcome. We investigated whether bacterial respiratory infections and viral load were associated with poor clinical outcome and host immune tone. We obtained bacterial and fungal culture data from 589 critically ill subjects with COVID-19 requiring mechanical ventilation. On a subset of the subjects that underwent bronchoscopy, we also quantified SARS-CoV-2 viral load, analyzed the microbiome of the lower airways by metagenome and metatranscriptome analyses and profiled the host immune response. We found that isolation of a hospital-acquired respiratory pathogen was not associated with fatal outcome. However, poor clinical outcome was associated with enrichment of the lower airway microbiota with an oral commensal ( Mycoplasma salivarium ), while high SARS-CoV-2 viral burden, poor anti-SARS-CoV-2 antibody response, together with a unique host transcriptome profile of the lower airways were most predictive of mortality. Collectively, these data support the hypothesis that 1) the extent of viral infectivity drives mortality in severe COVID-19, and therefore 2) clinical management strategies targeting viral replication and host responses to SARS-CoV-2 should be prioritized.
PMCID:8010736
PMID: 33791687
ISSN: n/a
CID: 4830952

Microbial signatures in the lower airways of mechanically ventilated COVID19 patients associated with poor clinical outcome

Sulaiman, Imran; Chung, Matthew; Angel, Luis; Tsay, Jun-Chieh J; Wu, Benjamin G; Yeung, Stephen T; Krolikowski, Kelsey; Li, Yonghua; Duerr, Ralf; Schluger, Rosemary; Thannickal, Sara A; Koide, Akiko; Rafeq, Samaan; Barnett, Clea; Postelnicu, Radu; Wang, Chang; Banakis, Stephanie; Perez-Perez, Lizzette; Jour, George; Shen, Guomiao; Meyn, Peter; Carpenito, Joseph; Liu, Xiuxiu; Ji, Kun; Collazo, Destiny; Labarbiera, Anthony; Amoroso, Nancy; Brosnahan, Shari; Mukherjee, Vikramjit; Kaufman, David; Bakker, Jan; Lubinsky, Anthony; Pradhan, Deepak; Sterman, Daniel H; Weiden, Michael; Hegu, Adriana; Evans, Laura; Uyeki, Timothy M; Clemente, Jose C; De Wit, Emmie; Schmidt, Ann Marie; Shopsin, Bo; Desvignes, Ludovic; Wang, Chan; Li, Huilin; Zhang, Bin; Forst, Christian V; Koide, Shohei; Stapleford, Kenneth A; Khanna, Kamal M; Ghedin, Elodie; Segal, Leopoldo N
Mortality among patients with COVID-19 and respiratory failure is high and there are no known lower airway biomarkers that predict clinical outcome. We investigated whether bacterial respiratory infections and viral load were associated with poor clinical outcome and host immune tone. We obtained bacterial and fungal culture data from 589 critically ill subjects with COVID-19 requiring mechanical ventilation. On a subset of the subjects that underwent bronchoscopy, we also quantified SARS-CoV-2 viral load, analyzed the microbiome of the lower airways by metagenome and metatranscriptome analyses and profiled the host immune response. We found that isolation of a hospital-acquired respiratory pathogen was not associated with fatal outcome. However, poor clinical outcome was associated with enrichment of the lower airway microbiota with an oral commensal ( Mycoplasma salivarium ), while high SARS-CoV-2 viral burden, poor anti-SARS-CoV-2 antibody response, together with a unique host transcriptome profile of the lower airways were most predictive of mortality. Collectively, these data support the hypothesis that 1) the extent of viral infectivity drives mortality in severe COVID-19, and therefore 2) clinical management strategies targeting viral replication and host responses to SARS-CoV-2 should be prioritized.
PMCID:7924286
PMID: 33655261
ISSN: n/a
CID: 4801472

Respiratory viruses in pediatric emergency department patients and their family members

Matienzo, Nelsa; Youssef, Mariam M; Comito, Devon; Lane, Benjamin; Ligon, Chanel; Morita, Haruka; Winchester, Arianna; Decker, Mary E; Dayan, Peter; Shopsin, Bo; Shaman, Jeffrey
BACKGROUND:Respiratory viral infections account for a substantial fraction of pediatric emergency department (ED) visits. We examined the epidemiological patterns of seven common respiratory viruses in children presenting to EDs with influenza-like illness (ILI). Additionally, we examined the co-occurrence of viral infections in the accompanying adults and risk factors associated with the acquisition of these viruses. METHODS:Nasopharyngeal swab were collected from children seeking medical care for ILI and their accompanying adults (Total N = 1315). Study sites included New York Presbyterian, Bellevue, and Tisch hospitals in New York City. PCR using a respiratory viral panel was conducted, and data on symptoms and medical history were collected. RESULTS:Respiratory viruses were detected in 399 children (62.25%) and 118 (17.5%) accompanying adults. The most frequent pathogen detected was human rhinovirus (HRV) (28.81%). Co-infection rates were 14.79% in children and 8.47% in adults. Respiratory syncytial virus (RSV) and parainfluenza infections occurred more often in younger children. Influenza and HRV occurred more often in older children. Influenza and coronavirus were mostly isolated in winter and spring, RSV in fall and winter and HRV in fall and spring. Children with HRV were more likely to have history of asthma. Adults with the same virus as their child often accompanied ≤ 2-year-old-positive children and were more likely to be symptomatic compared to adults with different viruses. CONCLUSIONS:Respiratory viruses, while presenting the same suite of symptoms, possess distinct seasonal cycles and affect individuals differently based on a number of identifiable factors, including age and history of asthma.
PMID: 33210476
ISSN: 1750-2659
CID: 4671342

Diversity of Functionally Distinct Clonal Sets of Human Conventional Memory B Cells That Bind Staphylococcal Protein A

Radke, Emily E; Li, Zhi; Hernandez, David N; El Bannoudi, Hanane; Kosakovsky Pond, Sergei L; Shopsin, Bo; Lopez, Peter; Fenyö, David; Silverman, Gregg J
Staphylococcus aureus, a common cause of serious and often fatal infections, is well-armed with secreted factors that disarm host immune defenses. Highly expressed in vivo during infection, Staphylococcal protein A (SpA) is reported to also contribute to nasal colonization that can be a prelude to invasive infection. Co-evolution with the host immune system has provided SpA with an Fc-antibody binding site, and a Fab-binding site responsible for non-immune superantigen interactions via germline-encoded surfaces expressed on many human BCRs. We wondered whether the recurrent exposures to S. aureus commonly experienced by adults, result in the accumulation of memory B-cell responses to other determinants on SpA. We therefore isolated SpA-specific class-switched memory B cells, and characterized their encoding VH : VL antibody genes. In SpA-reactive memory B cells, we confirmed a striking bias in usage for VH genes, which retain the surface that mediates the SpA-superantigen interaction. We postulate these interactions reflect co-evolution of the host immune system and SpA, which during infection results in immune recruitment of an extraordinarily high prevalence of B cells in the repertoire that subverts the augmentation of protective defenses. Herein, we provide the first evidence that human memory responses are supplemented by B-cell clones, and circulating-antibodies, that bind to SpA determinants independent of the non-immune Fc- and Fab-binding sites. In parallel, we demonstrate that healthy individuals, and patients recovering from S. aureus infection, both have circulating antibodies with these conventional binding specificities. These findings rationalize the potential utility of incorporating specially engineered SpA proteins into a protective vaccine.
PMCID:8113617
PMID: 33995388
ISSN: 1664-3224
CID: 4876542

Active surveillance documents rates of clinical care seeking due to respiratory illness

Galanti, Marta; Comito, Devon; Ligon, Chanel; Lane, Benjamin; Matienzo, Nelsa; Ibrahim, Sadiat; Shittu, Atinuke; Tagne, Eudosie; Birger, Ruthie; Ud-Dean, Minhaz; Filip, Ioan; Morita, Haruka; Rabadan, Raul; Anthony, Simon; Freyer, Greg A; Dayan, Peter; Shopsin, Bo; Shaman, Jeffrey
BACKGROUND:Respiratory viral infections are a leading cause of disease worldwide. However, the overall community prevalence of infections has not been properly assessed, as standard surveillance is typically acquired passively among individuals seeking clinical care. METHODS:We conducted a prospective cohort study in which participants provided daily diaries and weekly nasopharyngeal specimens that were tested for respiratory viruses. These data were used to analyze healthcare seeking behavior, compared with cross-sectional ED data and NYC surveillance reports, and used to evaluate biases of medically attended ILI as signal for population respiratory disease and infection. RESULTS:The likelihood of seeking medical attention was virus-dependent: higher for influenza and metapneumovirus (19%-20%), lower for coronavirus and RSV (4%), and 71% of individuals with self-reported ILI did not seek care and half of medically attended symptomatic manifestations did not meet the criteria for ILI. Only 5% of cohort respiratory virus infections and 21% of influenza infections were medically attended and classifiable as ILI. We estimated 1 ILI event per person/year but multiple respiratory infections per year. CONCLUSION/CONCLUSIONS:Standard, healthcare-based respiratory surveillance has multiple limitations. Specifically, ILI is an incomplete metric for quantifying respiratory disease, viral respiratory infection, and influenza infection. The prevalence of respiratory viruses, as reported by standard, healthcare-based surveillance, is skewed toward viruses producing more severe symptoms. Active, longitudinal studies are a helpful supplement to standard surveillance, can improve understanding of the overall circulation and burden of respiratory viruses, and can aid development of more robust measures for controlling the spread of these pathogens.
PMID: 32415751
ISSN: 1750-2659
CID: 4438372