Try a new search

Format these results:

Searched for:



Total Results:


Tau Immunotherapies for Alzheimer's Disease and Related Tauopathies: Status of Trials and Insights from Preclinical Studies

Sigurdsson, Einar M
 The tau protein undergoes pathological changes in Alzheimer's disease and other tauopathies that eventually lead to functional impairments. Over the years, several therapeutic approaches have been examined to slow or halt the progression of tau pathology but have yet to lead to an approved disease-modifying treatment. Of the drugs in clinical trials that directly target tau, immunotherapies are the largest category and mostly consist of antibodies in different stages of development. There is a reasonable optimism that at least some of these compounds will have a clinically meaningful efficacy. This view is based on the significant although modest efficacy of some antibodies targeting amyloid-β in Alzheimer's disease and the fact that tau pathology correlates much better with the degree of dementia than amyloid-β lesions. In Alzheimer's disease, clearing pathological tau may therefore improve function later in the disease process than when removing amyloid-β. This review provides a brief update on the active and passive clinical tau immunization trials with insight from preclinical studies. Various epitopes are being targeted and some of the antibodies are said to target extracellular tau but because almost all of pathological tau is found intracellularly, the most efficacious antibodies should be able to enter the cell.
PMID: 38427486
ISSN: 1875-8908
CID: 5664342

Development of brain-penetrable antibody radioligands for in vivo PET imaging of amyloid-β and tau

Banka, Vinay; Kelleher, Andrew; Sehlin, Dag; Hultqvist, Greta; Sigurdsson, Einar M; Syvänen, Stina; Ding, Yu-Shin
INTRODUCTION/UNASSIGNED:PET imaging. METHODS/UNASSIGNED:F]SFB in acetonitrile/0.1 M borate buffer solution (final pH ~ 8.5) with an incubation of 20 min at room temperature, followed by purification on a PD MiniTrap G-25 size exclusion gravity column. RESULTS/UNASSIGNED:F]SFB and bispecific antibodies showed a 65%-83% conversion efficiency with radiochemical purities of 95%-99% by radio-TLC. CONCLUSIONS/UNASSIGNED:PET imaging.
PMID: 37680310
ISSN: 2673-8880
CID: 5623752

Amyloid-β targeting immunisation in aged non-human primate (Microcebus murinus).

Trouche, Stéphanie G; Boutajangout, Allal; Asuni, Ayodeji; Fontés, Pascaline; Sigurdsson, Einar M; Verdier, Jean-Michel; Mestre-Francés, Nadine
Non-human primates have an important translational value given their close phylogenetic relationship to humans. Studies in these animals remain essential for evaluating efficacy and safety of new therapeutic approaches, particularly in aging primates that display Alzheimer's disease (AD) -like pathology. With the objective to improve amyloid-β (Aβ) targeting immunotherapy, we investigated the safety and efficacy of an active immunisation with an Aβ derivative, K6Aβ1-30-NH2, in old non-human primates. Thirty-two aged (4-10 year-old) mouse lemurs were enrolled in the study, and received up to four subcutaneous injections of the vaccine in alum adjuvant or adjuvant alone. Even though antibody titres to Aβ were not high, pathological examination of the mouse lemur brains showed a significant reduction in intraneuronal Aβ that was associated with reduced microgliosis, and the vaccination did not lead to microhemorrhages. Moreover, a subtle cognitive improvement was observed in the vaccinated primates, which was probably linked to Aβ clearance. This Aβ derivative vaccine appeared to be safe as a prophylactic measure based on the brain analyses and because it did not appear to have detrimental effects on the general health of these old animals.
PMID: 36592872
ISSN: 1090-2139
CID: 5403772

Targeting tau only extracellularly is likely to be less efficacious than targeting it both intra- and extracellularly

Congdon, Erin E; Jiang, Yixiang; Sigurdsson, Einar M
Aggregation of the tau protein is thought to be responsible for the neurodegeneration and subsequent functional impairments in diseases that are collectively named tauopathies. Alzheimer's disease is the most common tauopathy, but the group consists of over 20 different diseases, many of which have tau pathology as their primary feature. The development of tau therapies has mainly focused on preventing the formation of and/or clearing these aggregates. Of these, immunotherapies that aim to either elicit endogenous tau antibodies or deliver exogenous ones are the most common approach in clinical trials. While their mechanism of action can involve several pathways, both extra- and intracellular, pharmaceutical companies have primarily focused on antibody-mediated clearance of extracellular tau. As we have pointed out over the years, this is rather surprising because it is well known that most of pathological tau protein is found intracellularly. It has been repeatedly shown by several groups over the past decades that antibodies can enter neurons and that their cellular uptake can be enhanced by various means, particularly by altering their charge. Here, we will briefly describe the potential extra- and intracellular mechanisms involved in antibody-mediated clearance of tau pathology, discuss these in the context of recent failures of some of the tau antibody trials, and finally provide a brief overview of how the intracellular efficacy of tau antibodies can potentially be further improved by certain modifications that aim to enhance tau clearance via specific intracellular degradation pathways.
PMID: 34896021
ISSN: 1096-3634
CID: 5109542

Alzheimer's disease research progress in Australia: The Alzheimer's Association International Conference Satellite Symposium in Sydney

Sexton, Claire E; Anstey, Kaarin J; Baldacci, Filippo; Barnum, C J; Barron, Anna M; Blennow, Kaj; Brodaty, Henry; Burnham, Samantha; Elahi, Fanny M; Götz, Jürgen; Jeon, Yun-Hee; Koronyo-Hamaoui, Maya; Landau, Susan M; Lautenschlager, Nicola T; Laws, Simon M; Lipnicki, Darren M; Lu, Hanzhang; Masters, Colin L; Moyle, Wendy; Nakamura, Akinori; Pasinetti, Giulio Maria; Rao, Naren; Rowe, Christopher; Sachdev, Perminder S; Schofield, Peter R; Sigurdsson, Einar M; Smith, Kate; Srikanth, Velandai; Szoeke, Cassandra; Tansey, Malú G; Whitmer, Rachel; Wilcock, Donna; Wong, Tien Y; Bain, Lisa J; Carrillo, Maria C
The Alzheimer's Association International Conference held its sixth Satellite Symposium in Sydney, Australia in 2019, highlighting the leadership of Australian researchers in advancing the understanding of and treatment developments for Alzheimer's disease (AD) and other dementias. This leadership includes the Australian Imaging, Biomarker, and Lifestyle Flagship Study of Ageing (AIBL), which has fueled the identification and development of many biomarkers and novel therapeutics. Two multimodal lifestyle intervention studies have been launched in Australia; and Australian researchers have played leadership roles in other global studies in diverse populations. Australian researchers have also played an instrumental role in efforts to understand mechanisms underlying vascular contributions to cognitive impairment and dementia; and through the Women's Healthy Aging Project have elucidated hormonal and other factors that contribute to the increased risk of AD in women. Alleviating the behavioral and psychological symptoms of dementia has also been a strong research and clinical focus in Australia.
PMID: 34058063
ISSN: 1552-5279
CID: 4911832

Current Status of Clinical Trials on Tau Immunotherapies

Ji, Changyi; Sigurdsson, Einar M
Tau immunotherapies have advanced from proof-of-concept studies to over a dozen clinical trials for Alzheimer's disease (AD) and other tauopathies. Mechanistic studies in animal and culture models have provided valuable insight into how these therapies may work but multiple pathways are likely involved. Different groups have emphasized the importance of intracellular vs extracellular antibody-mediated clearance of the tau protein and there is no consensus on which pool of tau should ideally be targeted. Likewise, various normal and disease-selective epitopes are being targeted, and the antibody isotypes either favor phagocytosis of the tau-antibody complex or are neutral in that aspect. Most of the clinical trials are in early stages, thus their efficacy is not yet known, but all have been without any major adverse effects and some have reported target engagement. A few have been discontinued. One in phase I, presumably because of a poor pharmacokinetic profile, and three in phase II for a lack of efficacy although this trial stage is not well powered for efficacy measures. In these phase II studies, trials with two antibodies in patients with progressive supranuclear palsy or other primary tauopathies were halted but are continuing in patients with AD, and one antibody trial was stopped in early-stage AD but is continuing in moderate AD. These three antibodies have been reported to only work extracellularly and tau is not increased in the cerebrospinal fluid of primary tauopathies, which may explain the failures of two of them. In the discontinued AD trial, there are some concerns about how much of extracellular tau contains the N-terminal epitope that is being targeted. In addition, extracellular tau is only a small part of total tau, compared to intracellular tau. Targeting only the former may not be sufficient for functional benefits. Given these outcomes, decision makers within the pharmaceutical companies who green light these trials should attempt to target tau not only extracellularly but also intracellularly to increase their chances of success. Hopefully, some of the ongoing trials will provide some functional benefits to the large number of patients with tauopathies.
PMID: 34101156
ISSN: 1179-1950
CID: 4936642

Tau immunotherapies: Lessons learned, current status and future considerations

Sandusky-Beltran, L A; Sigurdsson, E M
The majority of clinical trials targeting the tau protein in Alzheimer's disease and other tauopathies are tau immunotherapies. Because tau pathology correlates better with the degree of dementia than amyloid-β lesions, targeting tau is likely to be more effective in improving cognition than clearing amyloid-β in Alzheimer's disease. However, the development of tau therapies is in many ways more complex than for amyloid-β therapies as briefly outlined in this review. Most of the trials are on humanized antibodies, which may have very different properties than the original mouse antibodies. The impact of these differences are to a large extent unknown, can be difficult to decipher, and may not always be properly considered. Furthermore, the ideal antibody properties for efficacy are not well established and can depend on several factors. However, considering the varied approaches in clinical trials, there is a general optimism that at least some of these trials may provide functional benefits to patients suffering of various tauopathies.
PMID: 32360477
ISSN: 1873-7064
CID: 4439062

Dynamics of Internalization and Intracellular Interaction of Tau Antibodies and Human Pathological Tau Protein in a Human Neuron-Like Model

Shamir, Dov B.; Deng, Yan; Wu, Qian; Modak, Swananda; Congdon, Erin E.; Sigurdsson, Einar M.
ISSN: 1664-2295
CID: 4729942

Structural characterization of monoclonal antibodies targeting C-terminal Ser404 region of phosphorylated tau protein

Chukwu, Jessica E; Congdon, Erin E; Sigurdsson, Einar M; Kong, Xiang-Peng
Targeting tau with immunotherapies is currently the most common approach taken in clinical trials of patients with Alzheimer's disease. The most prominent pathological feature of tau is its hyperphosphorylation, which may cause the protein to aggregate into toxic assemblies that collectively lead to neurodegeneration. Of the phospho-epitopes, the region around Ser396/Ser404 has received particular attention for therapeutic targeting because of its prominence and stability in diseased tissue. Herein, we present the antigen-binding fragment (Fab)/epitope complex structures of three different monoclonal antibodies (mAbs) that target the pSer404 tau epitope region. Most notably, these structures reveal an antigen conformation similar to a previously described pathogenic tau epitope, pSer422, which was shown to have a β-strand structure that may be linked to the seeding core in tau oligomers. In addition, we have previously reported on the similarly ordered conformation observed in a pSer396 epitope, which is in tandem with pSer404. Our data are the first Fab structures of mAbs bound to this epitope region of the tau protein and support the existence of proteopathic tau conformations stabilized by specific phosphorylation events that are viable targets for immune modulation. The atomic coordinates and structure factors have been deposited in the RCSB Protein Data Bank under accession codes 6DC7 (8B2 apo), 6DC8 (8B2), 6DC9 (h4E6), and 6DCA (6B2).
PMID: 30794086
ISSN: 1942-0870
CID: 3687582

Alzheimer's therapy development: A few points to consider

Sigurdsson, Einar M
Development of therapies for Alzheimer's disease has only resulted in a few approved drugs that provide some temporary symptomatic relief in certain patients. None of these compounds in clinical use halts or slows the progression of the disease. To date, several drugs targeting the amyloid-β peptide, and some against the tau protein, have failed in clinical trials. While there are various reasons for these failures, considering the following points may aid in improving the outcome of future trials. First, the tau protein should ideally be targeted intracellularly because most of tau pathology is within cells, neurons in particular. Second, an overriding emphasis in recent years has been on implementing drug-screening models that focus on prevention of seeding/spread of aggregates. Much less attention has been paid to identify compounds that inhibit neurotoxicity of these aggregates, which may not necessarily relate to their seeding/spread propensity. Ideally, all these markers should be readouts in the same assay or model. Third, diversity in conformers/strains of aggregates complicates drug development of small molecule aggregation inhibitors but is likely to be less of an issue for antibody-based treatments. Lastly, other more general targets associated with neurodegeneration should continue to be pursued but are in many ways more difficult to address than clearing amyloid-β and tau, the defining hallmarks of AD.
PMID: 31699315
ISSN: 1878-0814
CID: 4178022