Searched for: person:songs05
in-biosketch:yes
Lateralized local circuit tuning in female mouse auditory cortex
Song, Soomin C; Froemke, Robert C
Most offspring are born helpless, requiring intense caregiving from parents especially during the first few days of neonatal life. For many species, infant cries are a primary signal used by parents to provide caregiving. Previously we and others documented how maternal left auditory cortex rapidly becomes sensitized to pup calls over hours of parental experience, enabled by oxytocin. The speed and robustness of this maternal plasticity suggests cortical pre-tuning or initial bias for pup call stimulus features. Here we examine the circuit basis of left-lateralized tuning to vocalization features with whole-cell recordings in brain slices. We found that layer 2/3 pyramidal cells of female left auditory cortex show selective suppression of inhibitory inputs with repeated stimulation at the fundamental pup call rate (inter-stimulus interval ∼150 msec) in pup-naïve females and expanded with maternal experience. However, optogenetic stimulation of cortical inhibitory cells showed that inputs from somatostatin-positive and oxytocin-receptor-expressing interneurons were less suppressed at these rates. This suggested that disynaptic inhibition rather than monosynaptic depression was a major mechanism underlying pre-tuning of cortical excitatory neurons, confirmed with simulations. Thus cortical interneuron specializations can augment neuroplasticity mechanisms to ensure fast appropriate caregiving in response to infant cries.
PMID: 40189152
ISSN: 1872-8111
CID: 5823522
Neuronal hypofunction and network dysfunction in a mouse model at an early stage of tauopathy
Ji, Changyi; Yang, Xiaofeng; Eleish, Mohamed; Jiang, Yixiang; Tetlow, Amber M; Song, Soomin C; Martín-Ávila, Alejandro; Wu, Qian; Zhou, Yanmei; Gan, Wenbiao; Lin, Yan; Sigurdsson, Einar M
INTRODUCTION/BACKGROUND:It is unclear how early neuronal deficits occur in tauopathies, if these are associated with changes in neuronal network activity, and if they can be alleviated with therapies. METHODS:imaging in tauopathy mice at 6 versus 12 months, compared to controls, and treated the younger animals with a tau antibody. RESULTS:Neuronal function was impaired at 6 months but did not deteriorate further at 12 months, presumably because cortical tau burden was comparable at these ages. At 6 months, neurons were mostly hypoactive, with enhanced neuronal synchrony, and had dysregulated responses to stimulus. Ex vivo, electrophysiology revealed altered synaptic transmission and enhanced excitability of motor cortical neurons, which likely explains the altered network activity. Acute tau antibody treatment reduced pathological tau and gliosis and partially restored neuronal function. DISCUSSION/CONCLUSIONS:Tauopathies are associated with early neuronal deficits that can be attenuated with tau antibody therapy. HIGHLIGHTS/CONCLUSIONS:Neuronal hypofunction in awake and behaving mice in early stages of tauopathy. Altered network activity disrupted local circuitry engagement in tauopathy mice. Enhanced neuronal excitability and altered synaptic transmission in tauopathy mice. Tau antibody acutely reduced soluble phospho-tau and improved neuronal function.
PMID: 39368113
ISSN: 1552-5279
CID: 5710692
Vagus nerve stimulation recruits the central cholinergic system to enhance perceptual learning
Martin, Kathleen A; Papadoyannis, Eleni S; Schiavo, Jennifer K; Fadaei, Saba Shokat; Issa, Habon A; Song, Soomin C; Valencia, Sofia Orrey; Temiz, Nesibe Z; McGinley, Matthew J; McCormick, David A; Froemke, Robert C
Perception can be refined by experience, up to certain limits. It is unclear whether perceptual limits are absolute or could be partially overcome via enhanced neuromodulation and/or plasticity. Recent studies suggest that peripheral nerve stimulation, specifically vagus nerve stimulation (VNS), can alter neural activity and augment experience-dependent plasticity, although little is known about central mechanisms recruited by VNS. Here we developed an auditory discrimination task for mice implanted with a VNS electrode. VNS applied during behavior gradually improved discrimination abilities beyond the level achieved by training alone. Two-photon imaging revealed VNS induced changes to auditory cortical responses and activated cortically projecting cholinergic axons. Anatomical and optogenetic experiments indicated that VNS can enhance task performance through activation of the central cholinergic system. These results highlight the importance of cholinergic modulation for the efficacy of VNS and may contribute to further refinement of VNS methodology for clinical conditions.
PMID: 39284963
ISSN: 1546-1726
CID: 5720172
Neuronal hypofunction and network dysfunction in a mouse model at an early stage of tauopathy
Ji, Changyi; Yang, Xiaofeng; Eleish, Mohamed; Jiang, Yixiang; Tetlow, Amber M; Song, Soomin C; Martín-Ávila, Alejandro; Wu, Qian; Zhou, Yanmei; Gan, Wenbiao; Lin, Yan; Sigurdsson, Einar M
UNLABELLED:activity deficits but failed to rescue altered network changes. Taken together, substantial neuronal and network dysfunction occurred in the early stage of tauopathy that was partially alleviated with acute tau antibody treatment, which highlights the importance of functional assessment when evaluating the therapeutic potential of tau antibodies. HIGHLIGHTS/UNASSIGNED:Layer 2/3 motor cortical neurons exhibited hypofunction in awake and behaving mice at the early stage of tauopathy.Altered neuronal network activity disrupted local circuitry engagement in tauopathy mice during treadmill running.Layer 2/3 motor cortical neurons in tauopathy mice exhibited enhanced neuronal excitability and altered excitatory synaptic transmissions.Acute tau antibody treatment reduced pathological tau and gliosis, and partially restored neuronal hypofunction profiles but not network dysfunction.
PMCID:11092661
PMID: 38746288
CID: 5664362
HRAS-Mutant Cardiomyocyte Model of Multifocal Atrial Tachycardia
RodrÃguez, Nelson A; Patel, Nihir; Dariolli, Rafael; Ng, Simon; Aleman, Angelika G; Gong, Jingqi Q X; Lin, Hung-Mo; RodrÃguez, Matthew; Josowitz, Rebecca; Sol-Church, Katia; Gripp, Karen W; Lin, Xianming; Song, Soomin C; Fishman, Glenn I; Sobie, Eric A; Gelb, Bruce D
BACKGROUND/UNASSIGNED:variants. METHODS/UNASSIGNED: RESULTS/UNASSIGNED:) related to intracellular calcium homeostasis, heart rate, RAS signaling, and induction of pacemaker-nodal-like transcriptional programming. Immunoblotting confirmed increased protein levels for genes of interest and suppressed MAPK (mitogen-activated protein kinase) activity in mutant ACMs. CONCLUSIONS/UNASSIGNED:
PMCID:11021157
PMID: 38415356
ISSN: 1941-3084
CID: 5722602
Sex difference in the effect of environmental enrichment on food restriction-induced persistence of cocaine conditioned place preference and mechanistic underpinnings
Weiner, Sydney P; Vasquez, Carolina; Song, Soomin; Zhao, Kaiyang; Ali, Omar; Rosenkilde, Danielle; Froemke, Robert C; Carr, Kenneth D
Psychosocial and environmental factors, including loss of natural reward, contribute to the risk of drug abuse. Reward loss has been modeled in animals by removal from social or sexual contact, transfer from enriched to impoverished housing, or restriction of food. We previously showed that food restriction increases the unconditioned rewarding effects of abused drugs and the conditioned incentive effects of drug-paired environments. Mechanistic studies provided evidence of decreased basal dopamine (DA) transmission, adaptive upregulation of signaling downstream of D1 DA receptor stimulation, synaptic upscaling and incorporation of calcium-permeable AMPA receptors (CP-AMPARs) in medium spiny neurons (MSNs) of nucleus accumbens (NAc). These findings align with the still evolving 'reward deficiency' hypothesis of drug abuse. The present study tested whether a compound natural reward that is known to increase DA utilization, environmental enrichment, would prevent the persistent expression of cocaine conditioned place preference (CPP) otherwise observed in food restricted rats, along with the mechanistic underpinnings. Because nearly all prior investigations of both food restriction and environmental enrichment effects on cocaine CPP were conducted in male rodents, both sexes were included in the present study. Results indicate that environmental enrichment curtailed the persistence of CPP expression, decreased signaling downstream of the D1R, and decreased the amplitude and frequency of spontaneous excitatory postsynaptic currents (EPSCs) in NAc MSNs of food restricted male, but not female, rats. The failure of environmental enrichment to significantly decrease food restriction-induced synaptic insertion of CP-AMPARs, and how this may accord with previous pharmacological findings that blockade of CP-AMPARs reverses behavioral effects of food restriction is discussed. In addition, it is speculated that estrous cycle-dependent fluctuations in DA release, receptor density and MSN excitability may obscure the effect of increased DA signaling during environmental enrichment, thereby interfering with development of the cellular and behavioral effects that enrichment produced in males.
PMCID:10843874
PMID: 38323217
ISSN: 2772-3925
CID: 5737552
Kir6.1, a component of an ATP-sensitive potassium channel, regulates natural killer cell development
Samper, Natalie; Hardardottir, Lilja; Depierreux, Delphine M; Song, Soomin C; Nakazawa, Ayano; Gando, Ivan; Nakamura, Tomoe Y; Sharkey, Andrew M; Nowosad, Carla R; Feske, Stefan; Colucci, Francesco; Coetzee, William A
INTRODUCTION/UNASSIGNED:Involved in immunity and reproduction, natural killer (NK) cells offer opportunities to develop new immunotherapies to treat infections and cancer or to alleviate pregnancy complications. Most current strategies use cytokines or antibodies to enhance NK-cell function, but none use ion channel modulators, which are widely used in clinical practice to treat hypertension, diabetes, epilepsy, and other conditions. Little is known about ion channels in NK cells. RESULTS/UNASSIGNED:NK cells in the bone barrow and spleen. DISCUSSION/UNASSIGNED:subunit Kir6.1 has a key role in NK-cell development.
PMCID:11646858
PMID: 39687626
ISSN: 1664-3224
CID: 5764322
Astrocytic TDP-43 dysregulation impairs memory by modulating antiviral pathways and interferon-inducible chemokines
Licht-Murava, Avital; Meadows, Samantha M; Palaguachi, Fernando; Song, Soomin C; Jackvony, Stephanie; Bram, Yaron; Zhou, Constance; Schwartz, Robert E; Froemke, Robert C; Orr, Adam L; Orr, Anna G
Transactivating response region DNA binding protein 43 (TDP-43) pathology is prevalent in dementia, but the cell type-specific effects of TDP-43 pathology are not clear, and therapeutic strategies to alleviate TDP-43-linked cognitive decline are lacking. We found that patients with Alzheimer's disease or frontotemporal dementia have aberrant TDP-43 accumulation in hippocampal astrocytes. In mouse models, induction of widespread or hippocampus-targeted accumulation in astrocytic TDP-43 caused progressive memory loss and localized changes in antiviral gene expression. These changes were cell-autonomous and correlated with impaired astrocytic defense against infectious viruses. Among the changes, astrocytes had elevated levels of interferon-inducible chemokines, and neurons had elevated levels of the corresponding chemokine receptor CXCR3 in presynaptic terminals. CXCR3 stimulation altered presynaptic function and promoted neuronal hyperexcitability, akin to the effects of astrocytic TDP-43 dysregulation, and blockade of CXCR3 reduced this activity. Ablation of CXCR3 also prevented TDP-43-linked memory loss. Thus, astrocytic TDP-43 dysfunction contributes to cognitive impairment through aberrant chemokine-mediated astrocytic-neuronal interactions.
PMCID:10115456
PMID: 37075107
ISSN: 2375-2548
CID: 5464472
Bidirectional control of infant rat social behavior via dopaminergic innervation of the basolateral amygdala
Opendak, Maya; Raineki, Charlis; Perry, Rosemarie E; Rincón-Cortés, Millie; Song, Soomin C; Zanca, Roseanna M; Wood, Emma; Packard, Katherine; Hu, Shannon; Woo, Joyce; Martinez, Krissian; Vinod, K Yaragudri; Brown, Russell W; Deehan, Gerald A; Froemke, Robert C; Serrano, Peter A; Wilson, Donald A; Sullivan, Regina M
Social interaction deficits seen in psychiatric disorders emerge in early-life and are most closely linked to aberrant neural circuit function. Due to technical limitations, we have limited understanding of how typical versus pathological social behavior circuits develop. Using a suite of invasive procedures in awake, behaving infant rats, including optogenetics, microdialysis, and microinfusions, we dissected the circuits controlling the gradual increase in social behavior deficits following two complementary procedures-naturalistic harsh maternal care and repeated shock alone or with an anesthetized mother. Whether the mother was the source of the adversity (naturalistic Scarcity-Adversity) or merely present during the adversity (repeated shock with mom), both conditions elevated basolateral amygdala (BLA) dopamine, which was necessary and sufficient in initiating social behavior pathology. This did not occur when pups experienced adversity alone. These data highlight the unique impact of social adversity as causal in producing mesolimbic dopamine circuit dysfunction and aberrant social behavior.
PMID: 34706218
ISSN: 1097-4199
CID: 5033412
Dementia-linked TDP-43 dysregulation in astrocytes impairs memory, antiviral signaling, and chemokine-mediated astrocytic-neuronal interactions
Murava, Avital Licht; Meadows, Samantha; Palaguachi, Fernando; Song, Soomin C; Bram, Yaron; Zhou, Constance; Schwartz, Robert E; Froemke, Robert C; Orr, Adam L; Orr, Anna G
BACKGROUND:TDP-43 pathology is linked to cognitive deficits in diverse neurodegenerative disorders, including frontotemporal dementia (FTD), amyotrophic lateral sclerosis (ALS), and Alzheimer's disease (AD). The effects of TDP-43 pathology in different cell types, including astrocytes, are not clear. METHOD/METHODS:In this study, we used postmortem human brain samples, extensive behavioral testing in numerous cohorts of doubly transgenic mice, gene profiling in different isolated brain regions and cells, glial-neuronal co-culture assays and physiology, and biochemical assays to identify specific signaling cascades linked to TDP-43. RESULT/RESULTS:Our results show that astrocytic TDP-43 is mislocalized in postmortem human hippocampal tissue from AD cases. To assess the effects of widespread or hippocampus specific dysregulation of astrocytic TDP-43 in complementary systems, we generated three novel astrocyte specific mouse models of TDP-43 dysfunction. Consistently, these mouse models indicated that astrocytic TDP-43 dysfunction causes progressive hippocampus-dependent memory loss, but not motor deficits. Manipulation of astrocytic TDP-43 also increased hippocampal levels of interferon -inducible chemokines CXCL9 and CXCL10, and altered cell-autonomous antiviral signaling and defense against viral pathogens. Moreover, expression of CXCR3, the shared receptor for CXCL9 and CXCL10, was increased selectively in hippocampal presynaptic terminals. Acute or chronic stimulation of presynaptic CXCR3 modulated neuronal activities and presynaptic vesicles. CONCLUSION/CONCLUSIONS:Overall, our findings shed new light on TDP-43 dysregulation in astrocytes and its potential contributions to disease-related impairments in cognitive and immune-related functions. We report a novel chemokine-mediated astrocytic-neuronal pathway that is likely downstream of aberrant antiviral immune signaling in astrocytes that affects presynaptic release and neuronal activities. Together, these results implicate astrocytic TDP-43 dysregulation in the pathogenesis of dementia and point to chemokine signaling and CXCR3 as potential therapeutic targets for alleviating cognitive decline.
PMID: 34971156
ISSN: 1552-5279
CID: 5108322