Try a new search

Format these results:

Searched for:

person:sunghk01

in-biosketch:yes

Total Results:

87


Accuracy and precision of quantitative DCE-MRI parameters: How should one estimate contrast concentration?

Wake, Nicole; Chandarana, Hersh; Rusinek, Henry; Fujimoto, Koji; Moy, Linda; Sodickson, Daniel K; Kim, Sungheon Gene
INTRODUCTION/BACKGROUND:-weighted DCE-MRI. MATERIALS AND METHODS/METHODS:) and arterial input function (AIF). In addition, the effect of the conversion method on the diagnostic accuracy was evaluated with 36 breast lesions (19 benign and 17 malignant). RESULTS:. CONCLUSION/CONCLUSIONS:measurement is not available and a low FA is used for DCE-MRI, the uncertainty in the contrast kinetic parameter estimation can be reduced by using the LC method with pAIF, without compromising the diagnostic accuracy.
PMCID:6102067
PMID: 29777820
ISSN: 1873-5894
CID: 3121612

Feasibility analysis of early temporal kinetics as a surrogate marker for breast tumor type, grade, and aggressiveness

Heacock, Laura; Lewin, Alana A; Gao, Yiming; Babb, James S; Heller, Samantha L; Melsaether, Amy N; Bagadiya, Neeti; Kim, Sungheon G; Moy, Linda
BACKGROUND: Screening breast MRI has been shown to preferentially detect high-grade ductal carcinoma in situ (DCIS) and invasive carcinoma, likely due to increased angiogenesis resulting in early initial uptake of contrast. As interest grows in abbreviated screening breast MRI (AB-MRI), markers of early contrast washin that can predict tumor grade and potential aggressiveness are of clinical interest. PURPOSE: To evaluate the feasibility of using the initial enhancement ratio (IER) as a surrogate marker for tumor grade, hormone receptor status, and prognostic markers, as an initial step to being incorporated into AB-MRI. STUDY TYPE: Retrospective. SUBJECTS: In all, 162 women (mean 55.0 years, range 32.8-87.7 years) with 187 malignancies imaged January 2012-November 2015. FIELD STRENGTH/SEQUENCE: Images were acquired at 3.0T with a T1 -weighted gradient echo fat-suppressed-volume interpolated breath-hold sequence. ASSESSMENT: Subjects underwent dynamic contrast-enhanced breast MRI with a 7-channel breast coil. IER (% signal increase over baseline at the first postcontrast acquisition) was assessed and correlated with background parenchymal enhancement, washout curves, stage, and final pathology. STATISTICAL TESTS: Chi-square test, Spearman rank correlation, Mann-Whitney U-tests, Bland-Altman analysis, and receiver operating characteristic curve analysis. RESULTS: IER was higher for invasive cancer than for DCIS (R1/R2, P < 0.001). IER increased with tumor grade (R1: r = 0.56, P < 0.001, R2: r = 0.50, P < 0.001), as ki-67 increased (R1: r = 0.35, P < 0.001; R2 r = 0.35, P < 0.001), and for node-positive disease (R1/R2, P = 0.001). IER was higher for human epidermal growth factor receptor two-positive and triple negative cancers than for estrogen receptor-positive / progesterone receptor-positive tumors (R1 P < 0.001-0.002; R2 P = 0.0.001-0.011). IER had higher sensitivity (80.6% vs. 75.5%) and specificity (55.8% vs. 48.1%) than washout curves for positive nodes, higher specificity (48.1% vs. 36.5%) and positive predictive value (70.2% vs. 66.7%) for high ki-67, and excellent interobserver agreement (intraclass correlation coefficient = 0.82). DATA CONCLUSION: IER, a measurement of early contrast washin, is associated with higher-grade malignancies and tumor aggressiveness and might be potentially incorporated into an AB-MRI protocol. LEVEL OF EVIDENCE: 3 Technical Efficacy Stage 2 J. Magn. Reson. Imaging 2017.
PMCID:5971123
PMID: 29178258
ISSN: 1522-2586
CID: 2798172

Dynamic Contrast-Enhanced MRI-Derived Intracellular Water Lifetime (Ï„ i ): A Prognostic Marker for Patients with Head and Neck Squamous Cell Carcinomas

Chawla, S; Loevner, L A; Kim, S G; Hwang, W-T; Wang, S; Verma, G; Mohan, S; LiVolsi, V; Quon, H; Poptani, H
BACKGROUND AND PURPOSE/OBJECTIVE:Shutter-speed model analysis of dynamic contrast-enhanced MR imaging allows estimation of mean intracellular water molecule lifetime (a measure of cellular energy metabolism) and volume transfer constant (a measure of hemodynamics). The purpose of this study was to investigate the prognostic utility of pretreatment mean intracellular water molecule lifetime and volume transfer constant in predicting overall survival in patients with squamous cell carcinomas of the head and neck and to stratify p16-positive patients based upon survival outcome. MATERIALS AND METHODS/METHODS:A cohort of 60 patients underwent dynamic contrast-enhanced MR imaging before treatment. Median, mean intracellular water molecule lifetime and volume transfer constant values from metastatic nodes were computed from each patient. Kaplan-Meier analyses were performed to associate mean intracellular water molecule lifetime and volume transfer constant and their combination with overall survival for the first 2 years, 5 years, and beyond (median duration, >7 years). RESULTS:By the last date of observation, 18 patients had died, and median follow-up for surviving patients (n = 42) was 8.32 years. Patients with high mean intracellular water molecule lifetime (4 deaths) had significantly (P = .01) prolonged overall survival by 5 years compared with those with low mean intracellular water molecule lifetime (13 deaths). Similarly, patients with high mean intracellular water molecule lifetime (4 deaths) had significantly (P = .006) longer overall survival at long-term duration than those with low mean intracellular water molecule lifetime (14 deaths). However, volume transfer constant was a significant predictor for only the 5-year follow-up period. There was some evidence (P < .10) to suggest that mean intracellular water molecule lifetime and volume transfer constant were associated with overall survival for the first 2 years. Patients with high mean intracellular water molecule lifetime and high volume transfer constant were associated with significantly (P < .01) longer overall survival compared with other groups for all follow-up periods. In addition, p16-positive patients with high mean intracellular water molecule lifetime and high volume transfer constant demonstrated a trend toward the longest overall survival. CONCLUSIONS:A combined analysis of mean intracellular water molecule lifetime and volume transfer constant provided the best model to predict overall survival in patients with squamous cell carcinomas of the head and neck.
PMCID:5766394
PMID: 29146716
ISSN: 1936-959x
CID: 2946072

Comprehensive Dynamic Contrast-Enhanced 3D Magnetic Resonance Imaging of the Breast With Fat/Water Separation and High Spatiotemporal Resolution Using Radial Sampling, Compressed Sensing, and Parallel Imaging

Benkert, Thomas; Block, Kai Tobias; Heller, Samantha; Moccaldi, Melanie; Sodickson, Daniel K; Kim, Sungheon Gene; Moy, Linda
OBJECTIVES: The aim of this study was to assess the applicability of Dixon radial volumetric encoding (Dixon-RAVE) for comprehensive dynamic contrast-enhanced 3D magnetic resonance imaging (MRI) of the breast using a combination of radial sampling, model-based fat/water separation, compressed sensing, and parallel imaging. MATERIALS AND METHODS: In this Health Insurance Portability and Accountability Act-compliant prospective study, 24 consecutive patients underwent bilateral breast MRI, including both conventional fat-suppressed and non-fat-suppressed precontrast T1-weighted volumetric interpolated breath-hold examination (VIBE). Afterward, 1 continuous Dixon-RAVE scan was performed with the proposed approach while the contrast agent was injected. This scan was immediately followed by the acquisition of 4 conventional fat-saturated VIBE scans. From the comprehensive Dixon-RAVE data set, different image contrasts were reconstructed that are comparable to the separate conventional VIBE scans.Two radiologists independently rated image quality, conspicuity of fibroglandular tissue from fat (FG), and degree of fat suppression (FS) on a 5-point Likert-type scale for the following 3 comparisons: precontrast fat-suppressed (pre-FS), precontrast non-fat-suppressed (pre-NFS), and dynamic fat-suppressed (dyn-FS) images. RESULTS: When scores were averaged over readers, Dixon-RAVE achieved significantly higher (P < 0.001) degree of fat suppression compared with VIBE, for both pre-FS (4.25 vs 3.67) and dyn-FS (4.10 vs 3.46) images. Although Dixon-RAVE had lower image quality score compared with VIBE for the pre-FS (3.56 vs 3.67, P = 0.490), the pre-NFS (3.54 vs 3.88, P = 0.009), and the dyn-FS images (3.06 vs 3.67, P < 0.001), acceptable or better diagnostic quality was achieved (score >/= 3). The FG score for Dixon-RAVE in comparison to VIBE was significantly higher for the pre-FS image (4.23 vs 3.85, P = 0.044), lower for the pre-NFS image (3.98 vs 4.25, P = 0.054), and higher for the dynamic fat-suppressed image (3.90 vs 3.85, P = 0.845). CONCLUSIONS: Dixon-RAVE can serve as a one-stop-shop approach for comprehensive T1-weighted breast MRI with diagnostic image quality, high spatiotemporal resolution, reduced overall scan time, and improved fat suppression compared with conventional imaging.
PMCID:5585043
PMID: 28398929
ISSN: 1536-0210
CID: 2528202

Voxelwise analysis of simultaneously acquired and spatially correlated 18 F-fluorodeoxyglucose (FDG)-PET and intravoxel incoherent motion metrics in breast cancer

Ostenson, Jason; Pujara, Akshat C; Mikheev, Artem; Moy, Linda; Kim, Sungheon G; Melsaether, Amy N; Jhaveri, Komal; Adams, Sylvia; Faul, David; Glielmi, Christopher; Geppert, Christian; Feiweier, Thorsten; Jackson, Kimberly; Cho, Gene Y; Boada, Fernando E; Sigmund, Eric E
PURPOSE: Diffusion-weighted imaging (DWI) and 18 F-fluorodeoxyglucose-positron emission tomography (18 F-FDG-PET) independently correlate with malignancy in breast cancer, but the relationship between their structural and metabolic metrics is not completely understood. This study spatially correlates diffusion, perfusion, and glucose avidity in breast cancer with simultaneous PET/MR imaging and compares correlations with clinical prognostics. METHODS: In this Health Insurance Portability and Accountability Act-compliant prospective study, with written informed consent and approval of the institutional review board and using simultaneously acquired FDG-PET and DWI, tissue diffusion (Dt ), and perfusion fraction (fp ) from intravoxel incoherent motion (IVIM) analysis were registered to FDG-PET within 14 locally advanced breast cancers. Lesions were analyzed using 2D histograms and correlation coefficients between Dt , fp , and standardized uptake value (SUV). Correlations were compared with prognostics from biopsy, metastatic burden from whole-body PET, and treatment history. RESULTS: SUV||Dt correlation coefficient significantly distinguished treated (0.11 +/- 0.24) from nontreated (-0.33 +/- 0.26) patients (P = 0.005). SUV||fp correlations were on average negative for the whole cohort (-0.17 +/- 0.13). CONCLUSION: Simultaneously acquired and registered FDG-PET/DWI allowed quantifiable descriptions of breast cancer microenvironments that may provide a framework for monitoring and predicting response to treatment. Magn Reson Med, 2016. (c) 2016 International Society for Magnetic Resonance in Medicine.
PMCID:5405014
PMID: 27779790
ISSN: 1522-2594
CID: 2288692

Simultaneous measurement of T1 /B1 and pharmacokinetic model parameters using active contrast encoding (ACE)-MRI

Zhang, Jin; Winters, Kerryanne; Reynaud, Olivier; Kim, Sungheon Gene
The aim of this study was to assess the feasibility of combining dynamic contrast enhanced-magnetic resonance imaging (DCE-MRI) with the measurement of the radiofrequency (RF) transmit field B1 and pre-contrast longitudinal relaxation time T10 . A novel approach has been proposed to simultaneously estimate B1 and T10 from a modified DCE-MRI scan that actively encodes the washout phase of the curve with different amounts of T1 and B1 weighting using multiple flip angles and repetition times, hence referred to as active contrast encoding (ACE)-MRI. ACE-MRI aims to simultaneously measure B1 and T10 , together with contrast kinetic parameters, such as the transfer constant Ktrans , interstitial space volume fraction ve and vascular space volume fraction vp . The proposed method was tested using numerical simulations and in vivo studies with mouse models of breast cancer implanted in the flank and mammary fat pad, and glioma in the brain. In the numerical simulation study with a signal-to-noise ratio of 10, both B1 and T10 were estimated accurately with errors of 5.1 +/- 3.5% and 12.3 +/- 8.8% and coefficients of variation (CV) of 14.9 +/- 8.6% and 15.0 +/- 5.0%, respectively. Using the same ACE-MRI data, the kinetic parameters Ktrans , ve and vp were also estimated with errors of 14.2 +/- 8.3% (CV = 13.5 +/- 4.6%), 14.7 +/- 9.9% (CV = 13.3 +/- 4.5%) and 14.0 +/- 9.3% (CV = 14.0 +/- 4.5%), respectively. For the in vivo tumor data from 11 mice, voxel-wise comparisons between ACE-MRI and DCE-MRI methods showed that the mean differences for the five parameters were as follows: DeltaKtrans = 0.006 (/min), Deltave = 0.016, Deltavp = 0.000, DeltaB1 = -0.014 and DeltaT1 = -0.085 (s), which suggests a good agreement between the two methods. When compared with separately measured B1 and T10 , and DCE-MRI estimated kinetic parameters as a reference, the mean relative errors of ACE-MRI estimation were B1 = -0.3%, T10 = -8.5%, Ktrans = 11.4%, ve = 14.5% and vp = 4.5%. This proof-of-concept study demonstrates that the proposed ACE-MRI method can be used to estimate B1 and T10 , together with contrast kinetic model parameters.
PMCID:5557664
PMID: 28544159
ISSN: 1099-1492
CID: 2574942

Comparison of conventional DCE-MRI and a novel golden-angle radial multicoil compressed sensing method for the evaluation of breast lesion conspicuity

Heacock, Laura; Gao, Yiming; Heller, Samantha L; Melsaether, Amy N; Babb, James S; Block, Tobias K; Otazo, Ricardo; Kim, Sungheon G; Moy, Linda
PURPOSE: To compare a novel multicoil compressed sensing technique with flexible temporal resolution, golden-angle radial sparse parallel (GRASP), to conventional fat-suppressed spoiled three-dimensional (3D) gradient-echo (volumetric interpolated breath-hold examination, VIBE) MRI in evaluating the conspicuity of benign and malignant breast lesions. MATERIALS AND METHODS: Between March and August 2015, 121 women (24-84 years; mean, 49.7 years) with 180 biopsy-proven benign and malignant lesions were imaged consecutively at 3.0 Tesla in a dynamic contrast-enhanced (DCE) MRI exam using sagittal T1-weighted fat-suppressed 3D VIBE in this Health Insurance Portability and Accountability Act-compliant, retrospective study. Subjects underwent MRI-guided breast biopsy (mean, 13 days [1-95 days]) using GRASP DCE-MRI, a fat-suppressed radial "stack-of-stars" 3D FLASH sequence with golden-angle ordering. Three readers independently evaluated breast lesions on both sequences. Statistical analysis included mixed models with generalized estimating equations, kappa-weighted coefficients and Fisher's exact test. RESULTS: All lesions demonstrated good conspicuity on VIBE and GRASP sequences (4.28 +/- 0.81 versus 3.65 +/- 1.22), with no significant difference in lesion detection (P = 0.248). VIBE had slightly higher lesion conspicuity than GRASP for all lesions, with VIBE 12.6% (0.63/5.0) more conspicuous (P < 0.001). Masses and nonmass enhancement (NME) were more conspicuous on VIBE (P < 0.001), with a larger difference for NME (14.2% versus 9.4% more conspicuous). Malignant lesions were more conspicuous than benign lesions (P < 0.001) on both sequences. CONCLUSION: GRASP DCE-MRI, a multicoil compressed sensing technique with high spatial resolution and flexible temporal resolution, has near-comparable performance to conventional VIBE imaging for breast lesion evaluation. LEVEL OF EVIDENCE: 3 J. Magn. Reson. Imaging 2016.
PMCID:5538366
PMID: 27859874
ISSN: 1522-2586
CID: 2311022

Separation of benign and malignant breast lesions using dynamic contrast enhanced MRI in a biopsy cohort

Kim, Sungheon Gene; Freed, Melanie; Leite, Ana Paula Klautau; Zhang, Jin; Seuss, Claudia; Moy, Linda
PURPOSE: To assess the diagnostic utility of contrast kinetic analysis for breast lesions and background parenchyma of women undergoing MRI-guided biopsies, for whom standard clinical analysis had failed to separate benign and malignant lesions. MATERIALS AND METHODS: This study included 115 women who had indeterminate lesions based on routine diagnostic breast MRI exams and underwent an MRI (3 Tesla) -guided biopsy of one or more lesions suspicious for breast cancer. Breast dynamic contrast-enhanced (DCE)-MRI was performed using a radial stack-of-stars three-dimensional spoiled gradient echo pulse sequence and modified k-space weighted image contrast image reconstruction. Contrast kinetic model analysis was conducted to characterize the contrast enhancement patterns measured in lesions and background parenchyma (BP). The transfer rate (Ktrans ), interstitial volume fraction (ve ), and vascular volume fraction (vp ) estimated from the lesion and BP were used to separate malignant from benign lesions. RESULTS: The patients with malignant lesions had significantly (P < 0.05) higher median lesion-Ktrans (0.081 min-1 ), higher median BP-Ktrans (0.032 min-1 ), and BP-vp (0.020) than those without malignant lesions (0.056 min-1 , 0.017 min-1 and 0.012, respectively). The area under the receiver operating characteristic curve (AUC) of the BP-Ktrans (0.687) was highest among the single parameters and higher than that of the lesion-Ktrans (0.664). The combined logistic regression model of lesion-Ktrans , lesion-ve , BP-Ktrans , BP-ve , and BP-vp had the highest AUC of 0.730. CONCLUSION: Our results suggest that the contrast kinetic analysis of DCE-MRI data can be used to differentiate the malignant lesions from the benign and high-risk lesions among the indeterminate breast lesions recommended for MRI-guided biopsy exams. LEVEL OF EVIDENCE: 3 J. Magn. Reson. Imaging 2016.
PMCID:5395340
PMID: 27766710
ISSN: 1522-2586
CID: 2280152

Stimulated echo diffusion tensor imaging (STEAM-DTI) with varying diffusion times as a probe of breast tissue

Teruel, Jose R; Cho, Gene Y; Moccaldi Rt, Melanie; Goa, Pal E; Bathen, Tone F; Feiweier, Thorsten; Kim, Sungheon G; Moy, Linda; Sigmund, Eric E
PURPOSE: To explore the application of diffusion tensor imaging (DTI) for breast tissue and breast pathologies using a stimulated-echo acquisition mode (STEAM) with variable diffusion times. MATERIALS AND METHODS: In this Health Insurance Portability and Accountability Act-compliant study, approved by the local institutional review board, eight patients and six healthy volunteers underwent an MRI examination at 3 Tesla including STEAM-DTI with several diffusion times ranging from 68.5 to 902.5 ms. A DTI model was fitted to the data for each diffusion time, and parametric maps of mean diffusivity, fractional anisotropy, axial diffusivity, and radial diffusivity were computed for healthy fibroglandular tissue (FGT) and lesions. The median value of radial diffusivity for FGT was fitted to a linear decay to obtain an estimation of the surface-to-volume ratio, from which the radial diameter was calculated. RESULTS: For healthy FGT, radial diffusivity presented a linear decay with the square root of the diffusion time resulting in a range of estimated radial diameters from 202 to 496 microm, while axial diffusivity presented a nearly time-independent diffusion. Residual fat signal was reduced at longer diffusion times due to the shorter T1 of fat. Residual fat signal to the overall signal in the healthy volunteers' FGT was found to range from 2.39% to 2.55% (shortest mixing time), and from 0.40% to 0.51% (longest mixing time) for the b500 images. CONCLUSION: The use of variable diffusion times may provide an in vivo noninvasive tool to probe diffusion lengths in breast tissue and breast pathology, and might aid by improving fat suppression at longer diffusion times. J. Magn. Reson. Imaging 2016.
PMID: 27441890
ISSN: 1522-2586
CID: 2185552

Comparison of Whole-Body F FDG PET/MR Imaging and Whole-Body F FDG PET/CT in Terms of Lesion Detection and Radiation Dose in Patients with Breast Cancer

Melsaether, Amy N; Raad, Roy A; Pujara, Akshat C; Ponzo, Fabio D; Pysarenko, Kristine M; Jhaveri, Komal; Babb, James S; Sigmund, Eric E; Kim, Sungheon G; Moy, Linda A
Purpose To compare fluorine 18 (18F) fluorodeoxyglucose (FDG) combined positron emission tomography (PET) and magnetic resonance (MR) imaging with 18F FDG combined PET and computed tomography (CT) in terms of organ-specific metastatic lesion detection and radiation dose in patients with breast cancer. Materials and Methods From July 2012 to October 2013, this institutional review board-approved HIPAA-compliant prospective study included 51 patients with breast cancer (50 women; mean age, 56 years; range, 32-76 years; one man; aged 70 years) who completed PET/MR imaging with diffusion-weighted and contrast material-enhanced sequences after unenhanced PET/CT. Written informed consent for study participation was obtained. Two independent readers for each modality recorded site and number of lesions. Imaging and clinical follow-up, with consensus in two cases, served as the reference standard. Results There were 242 distant metastatic lesions in 30 patients, 18 breast cancers in 17 patients, and 19 positive axillary nodes in eight patients. On a per-patient basis, PET/MR imaging with diffusion-weighted and contrast-enhanced sequences depicted distant (30 of 30 [100%] for readers 1 and 2) and axillary (eight of eight [100%] for reader 1, seven of eight [88%] for reader 2) metastatic disease at rates similar to those of unenhanced PET/CT (distant metastatic disease: 28 of 29 [96%] for readers 3 and 4, P = .50; axillary metastatic disease: seven of eight [88%] for readers 3 and 4, P > .99) and outperformed PET/CT in the detection of breast cancer (17 of 17 [100%] for readers 1 and 2 vs 11 of 17 [65%] for reader 3 and 10 of 17 [59%] for reader 4; P < .001). PET/MR imaging showed increased sensitivity for liver (40 of 40 [100%] for reader 1 and 32 of 40 [80%] for reader 2 vs 30 of 40 [75%] for reader 3 and 28 of 40 [70%] for reader 4; P < .001) and bone (105 of 107 [98%] for reader 1 and 102 of 107 [95%] for reader 2 vs 106 of 107 [99%] for reader 3 and 93 of 107 [87%] for reader 4; P = .012) metastases and revealed brain metastases in five of 51 (10%) patients. PET/CT trended toward increased sensitivity for lung metastases (20 of 23 [87%] for reader 1 and 17 of 23 [74%] for reader 2 vs 23 of 23 [100%] for reader 3 and 22 of 23 [96%] for reader 4; P = .065). Dose reduction averaged 50% (P < .001). Conclusion In patients with breast cancer, PET/MR imaging may yield better sensitivity for liver and possibly bone metastases but not for pulmonary metastases, as compared with that attained with PET/CT, at about half the radiation dose. (c) RSNA, 2016 Online supplemental material is available for this article.
PMCID:5028256
PMID: 27023002
ISSN: 1527-1315
CID: 2059122