Try a new search

Format these results:

Searched for:

person:svirsm01 or azadpm01 or sagie01 or Nicole Capach (capacn01)

Total Results:

168


Locus coeruleus activity improves cochlear implant performance

Glennon, Erin; Valtcheva, Silvana; Zhu, Angela; Wadghiri, Youssef Z; Svirsky, Mario A; Froemke, Robert C
Cochlear implants (CIs) are neuroprosthetic devices that can provide hearing to deaf people1. Despite the benefits offered by CIs, the time taken for hearing to be restored and perceptual accuracy after long-term CI use remain highly variable2,3. CI use is believed to require neuroplasticity in the central auditory system, and differential engagement of neuroplastic mechanisms might contribute to the variability in outcomes4-7. Despite extensive studies on how CIs activate the auditory system4,8-12, the understanding of CI-related neuroplasticity remains limited. One potent factor enabling plasticity is the neuromodulator noradrenaline from the brainstem locus coeruleus (LC). Here we examine behavioural responses and neural activity in LC and auditory cortex of deafened rats fitted with multi-channel CIs. The rats were trained on a reward-based auditory task, and showed considerable individual differences of learning rates and maximum performance. LC photometry predicted when CI subjects began responding to sounds and longer-term perceptual accuracy. Optogenetic LC stimulation produced faster learning and higher long-term accuracy. Auditory cortical responses to CI stimulation reflected behavioural performance, with enhanced responses to rewarded stimuli and decreased distinction between unrewarded stimuli. Adequate engagement of central neuromodulatory systems is thus a potential clinically relevant target for optimizing neuroprosthetic device use.
PMID: 36544024
ISSN: 1476-4687
CID: 5395022

Strategic Pauses Relieve Listeners from the Effort of Listening to Fast Speech: Data Limited and Resource Limited Processes in Narrative Recall by Adult Users of Cochlear Implants

O'Leary, Ryan M; Neukam, Jonathan; Hansen, Thomas A; Kinney, Alexander J; Capach, Nicole; Svirsky, Mario A; Wingfield, Arthur
Speech that has been artificially accelerated through time compression produces a notable deficit in recall of the speech content. This is especially so for adults with cochlear implants (CI). At the perceptual level, this deficit may be due to the sharply degraded CI signal, combined with the reduced richness of compressed speech. At the cognitive level, the rapidity of time-compressed speech can deprive the listener of the ordinarily available processing time present when speech is delivered at a normal speech rate. Two experiments are reported. Experiment 1 was conducted with 27 normal-hearing young adults as a proof-of-concept demonstration that restoring lost processing time by inserting silent pauses at linguistically salient points within a time-compressed narrative ("time-restoration") returns recall accuracy to a level approximating that for a normal speech rate. Noise vocoder conditions with 10 and 6 channels reduced the effectiveness of time-restoration. Pupil dilation indicated that additional effort was expended by participants while attempting to process the time-compressed narratives, with the effortful demand on resources reduced with time restoration. In Experiment 2, 15 adult CI users tested with the same (unvocoded) materials showed a similar pattern of behavioral and pupillary responses, but with the notable exception that meaningful recovery of recall accuracy with time-restoration was limited to a subgroup of CI users identified by better working memory spans, and better word and sentence recognition scores. Results are discussed in terms of sensory-cognitive interactions in data-limited and resource-limited processes among adult users of cochlear implants.
PMCID:10637151
PMID: 37941344
ISSN: 2331-2165
CID: 5609922

Self-pacing ameliorates recall deficit when listening to vocoded discourse: a cochlear implant simulation

Hansen, Thomas A; O'Leary, Ryan M; Svirsky, Mario A; Wingfield, Arthur
INTRODUCTION/UNASSIGNED:In spite of its apparent ease, comprehension of spoken discourse represents a complex linguistic and cognitive operation. The difficulty of such an operation can increase when the speech is degraded, as is the case with cochlear implant users. However, the additional challenges imposed by degraded speech may be mitigated to some extent by the linguistic context and pace of presentation. METHODS/UNASSIGNED:An experiment is reported in which young adults with age-normal hearing recalled discourse passages heard with clear speech or with noise-band vocoding used to simulate the sound of speech produced by a cochlear implant. Passages were varied in inter-word predictability and presented either without interruption or in a self-pacing format that allowed the listener to control the rate at which the information was delivered. RESULTS/UNASSIGNED:Results showed that discourse heard with clear speech was better recalled than discourse heard with vocoded speech, discourse with a higher average inter-word predictability was better recalled than discourse with a lower average inter-word predictability, and self-paced passages were recalled better than those heard without interruption. Of special interest was the semantic hierarchy effect: the tendency for listeners to show better recall for main ideas than mid-level information or detail from a passage as an index of listeners' ability to understand the meaning of a passage. The data revealed a significant effect of inter-word predictability, in that passages with lower predictability had an attenuated semantic hierarchy effect relative to higher-predictability passages. DISCUSSION/UNASSIGNED:Results are discussed in terms of broadening cochlear implant outcome measures beyond current clinical measures that focus on single-word and sentence repetition.
PMCID:10694252
PMID: 38054180
ISSN: 1664-1078
CID: 5595622

Prevalence of Single-Sided Deafness in the United States

Kay-Rivest, Emily; Irace, Alexandria L; Golub, Justin S; Svirsky, Mario A
OBJECTIVES/HYPOTHESIS/OBJECTIVE:The aim of this study was to obtain a reliable estimate of single-sided deafness (SSD) prevalence in the adult U.S. POPULATION/METHODS/: METHODS:A cross-sectional national epidemiologic study was performed. Participants were included from the National Health and Nutrition Examination Survey (NHANES). Each cohort includes a nationally representative sample of approximately 5,000 noninstitutionalized civilians. Subjects 20 years old and over with audiometric testing were included. SSD was defined as normal hearing (pure-tone average [PTA] of ≤25 dB) in one ear and severe or worse hearing (PTA > 70 dB) in the other, using both three- and four-frequency PTA definition. Prevalence was measured as a raw number (n) and percentage (%) of the sample. Weighted estimates of prevalence were calculated based on the 2019 U.S. population census. RESULTS:An estimated 345,064 Americans (estimated prevalence of 0.14%, 95% confidence interval = 0.08-0.24) had SSD. SSD was more prevalent in individuals 60 to 79 years of age (estimated 155,917 U.S. adults, prevalence of 0.25%). A higher prevalence of SSD was noted among women compared to men (215,430 U.S. adult women, prevalence of 0.17% vs. 131,726 U.S. adult men, prevalence of 0.11%). Using a three-frequency PTA definition resulted in an estimated prevalence of 0.11%. Finally, 27% of adults with SSD reported having "good" or "excellent" hearing despite their hearing loss. CONCLUSIONS:The prevalence of SSD in the United States is estimated at 0.11%-0.14% (271,122 to 345,064 adults), depending on PTA definition used. These individuals could potentially benefit from auditory rehabilitation, including cochlear implantation. LEVEL OF EVIDENCE/METHODS:2 Laryngoscope, 2021.
PMID: 34757636
ISSN: 1531-4995
CID: 5043762

Stimulating the Cochlear Apex Without Longer Electrodes: Preliminary Results With a New Approach

Landsberger, David M; Stupak, Natalia; Spitzer, Emily R; Entwisle, Lavin; Mahoney, Laurel; Waltzman, Susan B; McMenomey, Sean; Friedmann, David R; Svirsky, Mario A; Shapiro, William; Roland, J Thomas
OBJECTIVE:To investigate a new surgical and signal processing technique that provides apical stimulation of the cochlea using a cochlear implant without extending the length of the electrode array. PATIENTS/METHODS:Three adult patients who underwent cochlear implantation using this new technique. INTERVENTIONS/METHODS:The patients received a cochlear implant. The surgery differed from the standard approach in that a ground electrode was placed in the cochlear helicotrema via an apical cochleostomy rather than in its typical location underneath the temporalis muscle. Clinical fitting was modified such that low frequencies were represented using the apically placed electrode as a ground. MAIN OUTCOME MEASURES/METHODS:Pitch scaling and speech recognition. RESULTS:All surgeries were successful with no complications. Pitch scaling demonstrated that use of the apically placed electrode as a ground lowered the perceived pitch of electric stimulation relative to monopolar stimulation. Speech understanding was improved compared with preoperative scores. CONCLUSIONS:The new surgical approach and clinical fitting are feasible. A lower pitch is perceived when using the apically placed electrode as a ground relative to stimulation using an extracochlear ground (i.e., monopolar mode), suggesting that stimulation can be provided more apically without the use of a longer electrode array. Further work is required to determine potential improvements in outcomes and optimal signal processing for the new approach.
PMID: 35283466
ISSN: 1537-4505
CID: 5213392

Valid Acoustic Models of Cochlear Implants: One Size Does Not Fit All

Svirsky, Mario A; Capach, Nicole Hope; Neukam, Jonathan D; Azadpour, Mahan; Sagi, Elad; Hight, Ariel Edward; Glassman, E Katelyn; Lavender, Annette; Seward, Keena P; Miller, Margaret K; Ding, Nai; Tan, Chin-Tuan; Fitzgerald, Matthew B
HYPOTHESIS/OBJECTIVE:This study tests the hypothesis that it is possible to find tone or noise vocoders that sound similar and result in similar speech perception scores to a cochlear implant (CI). This would validate the use of such vocoders as acoustic models of CIs. We further hypothesize that those valid acoustic models will require a personalized amount of frequency mismatch between input filters and output tones or noise bands. BACKGROUND:Noise or tone vocoders have been used as acoustic models of CIs in hundreds of publications but have never been convincingly validated. METHODS:Acoustic models were evaluated by single-sided deaf CI users who compared what they heard with the CI in one ear to what they heard with the acoustic model in the other ear. We evaluated frequency-matched models (both all-channel and 6-channel models, both tone and noise vocoders) as well as self-selected models that included an individualized level of frequency mismatch. RESULTS:Self-selected acoustic models resulted in similar levels of speech perception and similar perceptual quality as the CI. These models also matched the CI in terms of perceived intelligibility, harshness, and pleasantness. CONCLUSION/CONCLUSIONS:Valid acoustic models of CIs exist, but they are different from the models most widely used in the literature. Individual amounts of frequency mismatch may be required to optimize the validity of the model. This may be related to the basalward frequency mismatch experienced by postlingually deaf patients after cochlear implantation.
PMID: 34766938
ISSN: 1537-4505
CID: 5050812

Adults with cochlear implants can use prosody to determine the clausal structure of spoken sentences

Amichetti, Nicole M; Neukam, Jonathan; Kinney, Alexander J; Capach, Nicole; March, Samantha U; Svirsky, Mario A; Wingfield, Arthur
Speech prosody, including pitch contour, word stress, pauses, and vowel lengthening, can aid the detection of the clausal structure of a multi-clause sentence and this, in turn, can help listeners determine the meaning. However, for cochlear implant (CI) users, the reduced acoustic richness of the signal raises the question of whether CI users may have difficulty using sentence prosody to detect syntactic clause boundaries within sentences or whether this ability is rescued by the redundancy of the prosodic features that normally co-occur at clause boundaries. Twenty-two CI users, ranging in age from 19 to 77 years old, recalled three types of sentences: sentences in which the prosodic pattern was appropriate to the location of a clause boundary within the sentence (congruent prosody), sentences with reduced prosodic information, or sentences in which the location of the clause boundary and the prosodic marking of a clause boundary were placed in conflict. The results showed the presence of congruent prosody to be associated with superior sentence recall and a reduced processing effort as indexed by the pupil dilation. The individual differences in a standard test of word recognition (consonant-nucleus-consonant score) were related to the recall accuracy as well as the processing effort. The outcomes are discussed in terms of the redundancy of the prosodic features, which normally accompany a clause boundary and processing effort.
PMCID:8674009
PMID: 34972310
ISSN: 1520-8524
CID: 5108392

Reducing interaural tonotopic mismatch preserves binaural unmasking in cochlear implant simulations of single-sided deafness

Sagi, Elad; Azadpour, Mahan; Neukam, Jonathan; Capach, Nicole Hope; Svirsky, Mario A
Binaural unmasking, a key feature of normal binaural hearing, can refer to the improved intelligibility of masked speech by adding masking that facilitates perceived separation of target and masker. A question relevant for cochlear implant users with single-sided deafness (SSD-CI) is whether binaural unmasking can still be achieved if the additional masking is spectrally degraded and shifted. CIs restore some aspects of binaural hearing to these listeners, although binaural unmasking remains limited. Notably, these listeners may experience a mismatch between the frequency information perceived through the CI and that perceived by their normal hearing ear. Employing acoustic simulations of SSD-CI with normal hearing listeners, the present study confirms a previous simulation study that binaural unmasking is severely limited when interaural frequency mismatch between the input frequency range and simulated place of stimulation exceeds 1-2 mm. The present study also shows that binaural unmasking is largely retained when the input frequency range is adjusted to match simulated place of stimulation, even at the expense of removing low-frequency information. This result bears implications for the mechanisms driving the type of binaural unmasking of the present study and for mapping the frequency range of the CI speech processor in SSD-CI users.
PMID: 34717490
ISSN: 1520-8524
CID: 5037682

Meta-Analysis-Correlation between Spiral Ganglion Cell Counts and Speech Perception with a Cochlear Implant

Cheng, Yew-Song; Svirsky, Mario A
The presence of spiral ganglion cells (SGCs) is widely accepted to be a prerequisite for successful speech perception with a cochlear implant (CI), because SGCs provide the only known conduit between the implant electrode and the central auditory system. By extension, it has been hypothesized that the number of SGCs might be an important factor in CI outcomes. An impressive body of work has been published on findings from the laborious process of collecting temporal bones from CI users and counting the number of SGCs to correlate those numbers with speech perception scores, but the findings thus far have been conflicting. We performed a meta-analysis of all published studies with the hope that combining existing data may help us reach a more definitive conclusion about the relationship between SGC count and speech perception scores in adults.
PMCID:8161437
PMID: 34073290
ISSN: 2039-4330
CID: 4891432

Assessing temporal responsiveness of primary stimulated neurons in auditory brainstem and cochlear implant users

Azadpour, Mahan; Shapiro, William H; Roland, J Thomas; Svirsky, Mario A
The reasons why clinical outcomes with auditory brainstem implants (ABIs) are generally poorer than with cochlear implants (CIs) are still somewhat elusive. Prior work has focused on differences in processing of spectral information due to possibly poorer tonotopic representation and higher channel interaction with ABIs than with CIs. In contrast, this study examines the hypothesis that a potential contributing reason for poor speech perception in ABI users may be the relative lack of temporal responsiveness of the primary neurons that are stimulated by the ABI. The cochlear nucleus, the site of ABI stimulation, consists of different neuron types, most of which have much more complex responses than the auditory nerve neurons stimulated by a CI. Temporal responsiveness of primary stimulated neurons was assessed in a group of ABI and CI users by measuring recovery of electrically evoked compound action potentials (ECAPs) from single-pulse forward masking. Slower ECAP recovery tended to be associated with poorer hearing outcomes in both groups. ABI subjects with the longest recovery time had no speech understanding or even no hearing sensation with their ABI device; speech perception for the one CI outlier with long ECAP recovery time was well below average. To the extent that ECAP recovery measures reveal temporal properties of the primary neurons that receive direct stimulation form neural prosthesis devices, they may provide a physiological underpinning for clinical outcomes of auditory implants. ECAP recovery measures may be used to determine which portions of the cochlear nucleus to stimulate, and possibly allow us to enhance the stimulation paradigms.
PMID: 33434815
ISSN: 1878-5891
CID: 4746742