Try a new search

Format these results:

Searched for:

person:theset01

in-biosketch:yes

Total Results:

109


Functional brain connectivity is predictable from anatomic network's Laplacian eigen-structure

Abdelnour, Farras; Dayan, Michael; Devinsky, Orrin; Thesen, Thomas; Raj, Ashish
How structural connectivity (SC) gives rise to functional connectivity (FC) is not fully understood. Here we mathematically derive a simple relationship between SC measured from diffusion tensor imaging, and FC from resting state fMRI. We establish that SC and FC are related via (structural) Laplacian spectra, whereby FC and SC share eigenvectors and their eigenvalues are exponentially related. This gives, for the first time, a simple and analytical relationship between the graph spectra of structural and functional networks. Laplacian eigenvectors are shown to be good predictors of functional eigenvectors and networks based on independent component analysis of functional time series. A small number of Laplacian eigenmodes are shown to be sufficient to reconstruct FC matrices, serving as basis functions. This approach is fast, and requires no time-consuming simulations. It was tested on two empirical SC/FC datasets, and was found to significantly outperform generative model simulations of coupled neural masses.
PMID: 29454104
ISSN: 1095-9572
CID: 2990642

Parieto-frontal gyrification and working memory in healthy adults

Green, Sophie; Blackmon, Karen; Thesen, Thomas; DuBois, Jonathan; Wang, Xiuyuan; Halgren, Eric; Devinsky, Orrin
Gyrification of the cortical mantle is a dynamic process that increases with cortical surface area and decreases with age. Increased gyrification is associated with higher scores on cognitive tasks in adults; however, the degree to which this relationship is independent of cortical surface area remains undefined. This study investigates whether regional variation in gyrification is associated with domain-general and domain-specific cognition. Our hypothesis is that increased local gyrification confers a functional advantage that is independent of surface area. To quantify regional gyrification, we computed the local gyrification index (LGI) at each vertex and averaged across a bilateral parietal-frontal region associated with general intelligence and reasoning (Jung and Haier 2007). A sample of 48 healthy adults (24 males/24 females; ages 18-68 years) completed a high-resolution 3 T T1-weighted MRI and standardized administration of the Wechsler Adult Intelligence Scale (WAIS). We found a positive correlation between cortical gyrification and working memory, which remained significant after controlling for cortical surface area. Results suggest that a higher degree of local cortical folding confers a functional advantage that is independent from surface area and evident for more dynamic or "fluid" cognitive processes (i.e., working memory) rather than over-learned or "crystallized" cognitive processes.
PMID: 28290070
ISSN: 1931-7565
CID: 2489872

Author Correction: Low frequency transcranial electrical stimulation does not entrain sleep rhythms measured by human intracranial recordings [Correction]

Lafon, Belen; Henin, Simon; Huang, Yu; Friedman, Daniel; Melloni, Lucia; Thesen, Thomas; Doyle, Werner; Buzsaki, Gyorgy; Devinsky, Orrin; Parra, Lucas C; Liu, Anli
It has come to our attention that we did not specify whether the stimulation magnitudes we report in this Article are peak amplitudes or peak-to-peak. All references to intensity given in mA in the manuscript refer to peak-to-peak amplitudes, except in Fig. 2, where the model is calibrated to 1 mA peak amplitude, as stated. In the original version of the paper we incorrectly calibrated the computational models to 1 mA peak-to-peak, rather than 1 mA peak amplitude. This means that we divided by a value twice as large as we should have. The correct estimated fields are therefore twice as large as shown in the original Fig. 2 and Supplementary Figure 11. The corrected figures are now properly calibrated to 1 mA peak amplitude. Furthermore, the sentence in the first paragraph of the Results section 'Intensity ranged from 0.5 to 2.5 mA (current density 0.125-0.625 mA mA/cm2), which is stronger than in previous reports', should have read 'Intensity ranged from 0.5 to 2.5 mA peak to peak (peak current density 0.0625-0.3125 mA/cm2), which is stronger than in previous reports.' These errors do not affect any of the Article's conclusions.
PMCID:5830401
PMID: 29491347
ISSN: 2041-1723
CID: 2965562

Structural brain abnormalities in the common epilepsies assessed in a worldwide ENIGMA study

Whelan, Christopher D; Altmann, Andre; Botía, Juan A; Jahanshad, Neda; Hibar, Derrek P; Absil, Julie; Alhusaini, Saud; Alvim, Marina K M; Auvinen, Pia; Bartolini, Emanuele; Bergo, Felipe P G; Bernardes, Tauana; Blackmon, Karen; Braga, Barbara; Caligiuri, Maria Eugenia; Calvo, Anna; Carr, Sarah J; Chen, Jian; Chen, Shuai; Cherubini, Andrea; David, Philippe; Domin, Martin; Foley, Sonya; França, Wendy; Haaker, Gerrit; Isaev, Dmitry; Keller, Simon S; Kotikalapudi, Raviteja; Kowalczyk, Magdalena A; Kuzniecky, Ruben; Langner, Soenke; Lenge, Matteo; Leyden, Kelly M; Liu, Min; Loi, Richard Q; Martin, Pascal; Mascalchi, Mario; Morita, Marcia E; Pariente, Jose C; Rodríguez-Cruces, Raul; Rummel, Christian; Saavalainen, Taavi; Semmelroch, Mira K; Severino, Mariasavina; Thomas, Rhys H; Tondelli, Manuela; Tortora, Domenico; Vaudano, Anna Elisabetta; Vivash, Lucy; von Podewils, Felix; Wagner, Jan; Weber, Bernd; Yao, Yi; Yasuda, Clarissa L; Zhang, Guohao; Bargalló, Nuria; Bender, Benjamin; Bernasconi, Neda; Bernasconi, Andrea; Bernhardt, Boris C; Blümcke, Ingmar; Carlson, Chad; Cavalleri, Gianpiero L; Cendes, Fernando; Concha, Luis; Delanty, Norman; Depondt, Chantal; Devinsky, Orrin; Doherty, Colin P; Focke, Niels K; Gambardella, Antonio; Guerrini, Renzo; Hamandi, Khalid; Jackson, Graeme D; Kälviäinen, Reetta; Kochunov, Peter; Kwan, Patrick; Labate, Angelo; McDonald, Carrie R; Meletti, Stefano; O'Brien, Terence J; Ourselin, Sebastien; Richardson, Mark P; Striano, Pasquale; Thesen, Thomas; Wiest, Roland; Zhang, Junsong; Vezzani, Annamaria; Ryten, Mina; Thompson, Paul M; Sisodiya, Sanjay M
Progressive functional decline in the epilepsies is largely unexplained. We formed the ENIGMA-Epilepsy consortium to understand factors that influence brain measures in epilepsy, pooling data from 24 research centres in 14 countries across Europe, North and South America, Asia, and Australia. Structural brain measures were extracted from MRI brain scans across 2149 individuals with epilepsy, divided into four epilepsy subgroups including idiopathic generalized epilepsies (n =367), mesial temporal lobe epilepsies with hippocampal sclerosis (MTLE; left, n = 415; right, n = 339), and all other epilepsies in aggregate (n = 1026), and compared to 1727 matched healthy controls. We ranked brain structures in order of greatest differences between patients and controls, by meta-analysing effect sizes across 16 subcortical and 68 cortical brain regions. We also tested effects of duration of disease, age at onset, and age-by-diagnosis interactions on structural measures. We observed widespread patterns of altered subcortical volume and reduced cortical grey matter thickness. Compared to controls, all epilepsy groups showed lower volume in the right thalamus (Cohen's d = -0.24 to -0.73; P < 1.49 × 10-4), and lower thickness in the precentral gyri bilaterally (d = -0.34 to -0.52; P < 4.31 × 10-6). Both MTLE subgroups showed profound volume reduction in the ipsilateral hippocampus (d = -1.73 to -1.91, P < 1.4 × 10-19), and lower thickness in extrahippocampal cortical regions, including the precentral and paracentral gyri, compared to controls (d = -0.36 to -0.52; P < 1.49 × 10-4). Thickness differences of the ipsilateral temporopolar, parahippocampal, entorhinal, and fusiform gyri, contralateral pars triangularis, and bilateral precuneus, superior frontal and caudal middle frontal gyri were observed in left, but not right, MTLE (d = -0.29 to -0.54; P < 1.49 × 10-4). Contrastingly, thickness differences of the ipsilateral pars opercularis, and contralateral transverse temporal gyrus, were observed in right, but not left, MTLE (d = -0.27 to -0.51; P < 1.49 × 10-4). Lower subcortical volume and cortical thickness associated with a longer duration of epilepsy in the all-epilepsies, all-other-epilepsies, and right MTLE groups (beta, b < -0.0018; P < 1.49 × 10-4). In the largest neuroimaging study of epilepsy to date, we provide information on the common epilepsies that could not be realistically acquired in any other way. Our study provides a robust ranking of brain measures that can be further targeted for study in genetic and neuropathological studies. This worldwide initiative identifies patterns of shared grey matter reduction across epilepsy syndromes, and distinctive abnormalities between epilepsy syndromes, which inform our understanding of epilepsy as a network disorder, and indicate that certain epilepsy syndromes involve more widespread structural compromise than previously assumed.
PMCID:5837616
PMID: 29365066
ISSN: 1460-2156
CID: 2929252

Patient-Specific Pose Estimation in Clinical Environments

Chen, Kenny; Gabriel, Paolo; Alasfour, Abdulwahab; Gong, Chenghao; Doyle, Werner K; Devinsky, Orrin; Friedman, Daniel; Dugan, Patricia; Melloni, Lucia; Thesen, Thomas; Gonda, David; Sattar, Shifteh; Wang, Sonya; Gilja, Vikash
Reliable posture labels in hospital environments can augment research studies on neural correlates to natural behaviors and clinical applications that monitor patient activity. However, many existing pose estimation frameworks are not calibrated for these unpredictable settings. In this paper, we propose a semi-automated approach for improving upper-body pose estimation in noisy clinical environments, whereby we adapt and build around an existing joint tracking framework to improve its robustness to environmental uncertainties. The proposed framework uses subject-specific convolutional neural network models trained on a subset of a patient's RGB video recording chosen to maximize the feature variance of each joint. Furthermore, by compensating for scene lighting changes and by refining the predicted joint trajectories through a Kalman filter with fitted noise parameters, the extended system yields more consistent and accurate posture annotations when compared with the two state-of-the-art generalized pose tracking algorithms for three hospital patients recorded in two research clinics.
PMCID:6255526
PMID: 30483453
ISSN: 2168-2372
CID: 3500622

Replay of large-scale spatio-temporal patterns from waking during subsequent NREM sleep in human cortex

Jiang, Xi; Shamie, Isaac; K Doyle, Werner; Friedman, Daniel; Dugan, Patricia; Devinsky, Orrin; Eskandar, Emad; Cash, Sydney S; Thesen, Thomas; Halgren, Eric
Animal studies support the hypothesis that in slow-wave sleep, replay of waking neocortical activity under hippocampal guidance leads to memory consolidation. However, no intracranial electrophysiological evidence for replay exists in humans. We identified consistent sequences of population firing peaks across widespread cortical regions during complete waking periods. The occurrence of these "Motifs" were compared between sleeps preceding the waking period ("Sleep-Pre") when the Motifs were identified, and those following ("Sleep-Post"). In all subjects, the majority of waking Motifs (most of which were novel) had more matches in Sleep-Post than in Sleep-Pre. In rodents, hippocampal replay occurs during local sharp-wave ripples, and the associated neocortical replay tends to occur during local sleep spindles and down-to-up transitions. These waves may facilitate consolidation by sequencing cell-firing and encouraging plasticity. Similarly, we found that Motifs were coupled to neocortical spindles, down-to-up transitions, theta bursts, and hippocampal sharp-wave ripples. While Motifs occurring during cognitive task performance were more likely to have more matches in subsequent sleep, our studies provide no direct demonstration that the replay of Motifs contributes to consolidation. Nonetheless, these results confirm a core prediction of the dominant neurobiological theory of human memory consolidation.
PMCID:5727134
PMID: 29234075
ISSN: 2045-2322
CID: 2844352

Low frequency transcranial electrical stimulation does not entrain sleep rhythms measured by human intracranial recordings

Lafon, Belen; Henin, Simon; Huang, Yu; Friedman, Daniel; Melloni, Lucia; Thesen, Thomas; Doyle, Werner; Buzsaki, Gyorgy; Devinsky, Orrin; Parra, Lucas C; A Liu, Anli
Transcranial electrical stimulation has widespread clinical and research applications, yet its effect on ongoing neural activity in humans is not well established. Previous reports argue that transcranial alternating current stimulation (tACS) can entrain and enhance neural rhythms related to memory, but the evidence from non-invasive recordings has remained inconclusive. Here, we measure endogenous spindle and theta activity intracranially in humans during low-frequency tACS and find no stable entrainment of spindle power during non-REM sleep, nor of theta power during resting wakefulness. As positive controls, we find robust entrainment of spindle activity to endogenous slow-wave activity in 66% of electrodes as well as entrainment to rhythmic noise-burst acoustic stimulation in 14% of electrodes. We conclude that low-frequency tACS at common stimulation intensities neither acutely modulates spindle activity during sleep nor theta activity during waking rest, likely because of the attenuated electrical fields reaching the cortical surface.
PMCID:5662600
PMID: 29084960
ISSN: 2041-1723
CID: 2765082

Structural brain changes in medically refractory focal epilepsy resemble premature brain aging

Pardoe, Heath R; Cole, James H; Blackmon, Karen; Thesen, Thomas; Kuzniecky, Ruben
OBJECTIVE: We used whole brain T1-weighted MRI to estimate the age of individuals with medically refractory focal epilepsy, and compared with individuals with newly diagnosed focal epilepsy and healthy controls. The difference between neuroanatomical age and chronological age was compared between the three groups. METHODS: Neuroanatomical age was estimated using a machine learning-based method that was trained using structural MRI scans from a large independent healthy control sample (N=2001). The prediction model was then used to estimate age from MRI scans obtained from newly diagnosed focal epilepsy patients (N=42), medically refractory focal epilepsy patients (N=94) and healthy controls (N=74). RESULTS: Individuals with medically refractory epilepsy had a difference between predicted brain age and chronological age that was on average 4.5 years older than healthy controls (p=4.6x10-5). No significant differences were observed in newly diagnosed focal epilepsy. Earlier age of onset was associated with an increased brain age difference in the medically refractory group (p=0.034). SIGNIFICANCE: Medically refractory focal epilepsy is associated with structural brain changes that resemble premature brain aging.
PMID: 28410487
ISSN: 1872-6844
CID: 2528442

Parahippocampal and Entorhinal Resection Extent Predicts Verbal Memory Decline in an Epilepsy Surgery Cohort

Liu, Anli; Thesen, Thomas; Barr, William; Morrison, Chris; Dugan, Patricia; Wang, Xiuyuan; Meager, Michael; Doyle, Werner; Kuzniecky, Ruben; Devinsky, Orrin; Blackmon, Karen
The differential contribution of medial-temporal lobe regions to verbal declarative memory is debated within the neuroscience, neuropsychology, and cognitive psychology communities. We evaluate whether the extent of surgical resection within medial-temporal regions predicts longitudinal verbal learning and memory outcomes. This single-center retrospective observational study involved patients with refractory temporal lobe epilepsy undergoing unilateral anterior temporal lobe resection from 2007 to 2015. Thirty-two participants with Engel Classes 1 and 2 outcomes were included (14 left, 18 right) and followed for a mean of 2.3 years after surgery (+/-1.5 years). Participants had baseline and postsurgical neuropsychological testing and high-resolution T1-weighted MRI scans. Postsurgical lesions were manually traced and coregistered to presurgical scans to precisely quantify resection extent of medial-temporal regions. Verbal learning and memory change scores were regressed on hippocampal, entorhinal, and parahippocampal resection volume after accounting for baseline performance. Overall, there were no significant differences in learning and memory change between patients who received left and right anterior temporal lobe resection. After controlling for baseline performance, the extent of left parahippocampal resection accounted for 27% (p = .021) of the variance in verbal short delay free recall. The extent of left entorhinal resection accounted for 37% (p = .004) of the variance in verbal short delay free recall. Our findings highlight the critical role that the left parahippocampal and entorhinal regions play in recall for verbal material.
PMID: 27991184
ISSN: 1530-8898
CID: 2465052

Amygdala enlargement: Temporal lobe epilepsy subtype or nonspecific finding?

Reyes, Anny; Thesen, Thomas; Kuzniecky, Ruben; Devinsky, Orrin; McDonald, Carrie R; Jackson, Graeme D; Vaughan, David N; Blackmon, Karen
OBJECTIVE: Amygdala enlargement (AE) is observed in patients with temporal lobe epilepsy (TLE), which has led to the suggestion that it represents a distinct TLE subtype; however, it is unclear whether AE is found at similar rates in other epilepsy syndromes or in healthy controls, which would limit its value as a marker for focal epileptogenicity. METHODS: We compared rates of AE, defined quantitatively from high-resolution T1-weighted MRI, in a large multi-site sample of 136 patients with nonlesional localization related epilepsy (LRE), including TLE and extratemporal (exTLE) focal epilepsy, 34 patients with idiopathic generalized epilepsy (IGE), and 233 healthy controls (HCs). RESULTS: AE was found in all groups including HCs; however, the rate of AE was higher in LRE (18.4%) than in IGE (5.9%) and HCs (6.4%). Patients with unilateral LRE were further evaluated to compare rates of concordant ipsilateral AE in TLE and exTLE, with the hypothesis that rates of ipsilateral AE would be higher in TLE. Although ipsilateral AE was higher in TLE (19.4%) than exTLE (10.5%), this difference was not significant. Furthermore, among the 25 patients with unilateral LRE and AE, 13 (52%) had either bilateral AE or AE contralateral to seizure onset. CONCLUSION: Results suggest that AE, as defined with MRI volumetry, may represent an associated feature of nonlesional localization related epilepsy with limited seizure onset localization value.
PMCID:5945291
PMID: 28284051
ISSN: 1872-6844
CID: 2477542