Try a new search

Format these results:

Searched for:

person:torrej12

in-biosketch:yes

Total Results:

27


GIPC proteins negatively modulate Plexind1 signaling during vascular development

Carretero-Ortega, Jorge; Chhangawala, Zinal; Hunt, Shane; Narvaez, Carlos; Menéndez-González, Javier; Gay, Carl M; Zygmunt, Tomasz; Li, Xiaochun; Torres-Vázquez, Jesús
Semaphorins (SEMAs) and their Plexin (PLXN) receptors are central regulators of metazoan cellular communication. SEMA-PLXND1 signaling plays important roles in cardiovascular, nervous, and immune system development, and cancer biology. However, little is known about the molecular mechanisms that modulate SEMA-PLXND1 signaling. As PLXND1 associates with GIPC family endocytic adaptors, we evaluated the requirement for the molecular determinants of their association and PLXND1's vascular role. Zebrafish that endogenously express a Plxnd1 receptor with a predicted impairment in GIPC binding exhibit low penetrance angiogenesis deficits and antiangiogenic drug hypersensitivity. Moreover, gipc mutant fish show angiogenic impairments that are ameliorated by reducing Plxnd1 signaling. Finally, GIPC depletion potentiates SEMA-PLXND1 signaling in cultured endothelial cells. These findings expand the vascular roles of GIPCs beyond those of the Vascular Endothelial Growth Factor (VEGF)-dependent, proangiogenic GIPC1-Neuropilin 1 complex, recasting GIPCs as negative modulators of antiangiogenic PLXND1 signaling and suggest that PLXND1 trafficking shapes vascular development.
PMID: 31050647
ISSN: 2050-084x
CID: 3846312

Structure analyses reveal a regulated oligomerization mechanism of the PlexinD1/GIPC/myosin VI complex

Shang, Guijun; Brautigam, Chad A; Chen, Rui; Lu, Defen; Torres-Vazquez, Jesus; Zhang, Xuewu
The GIPC family adaptor proteins mediate endocytosis by tethering cargo proteins to the myosin VI motor. The structural mechanisms for the GIPC/cargo and GIPC/myosin VI interactions remained unclear. PlexinD1, a transmembrane receptor that regulates neuronal and cardiovascular development, is a cargo of GIPCs. GIPC-mediated endocytic trafficking regulates PlexinD1 signaling. Here we unravel the mechanisms of the interactions among PlexinD1, GIPCs and myosin VI by a series of crystal structures of these proteins in apo or bound states. GIPC1 forms a domain-swapped dimer in an autoinhibited conformation that hinders binding of both PlexinD1 and myosin VI. PlexinD1 binding to GIPC1 releases the autoinhibition, promoting its interaction with myosin VI. GIPCs and myosin VI interact through two distinct interfaces and form an open-ended alternating array. Our data support that this alternating array underlies the oligomerization of the GIPC/Myosin VI complexes in solution and cells.
PMCID:5461112
PMID: 28537552
ISSN: 2050-084x
CID: 2574802

Aminoacyl-Transfer RNA Synthetase Deficiency Promotes Angiogenesis via the Unfolded Protein Response Pathway

Castranova, Daniel; Davis, Andrew E; Lo, Brigid D; Miller, Mayumi F; Paukstelis, Paul J; Swift, Matthew R; Pham, Van N; Torres-Vazquez, Jesus; Bell, Kameha; Shaw, Kenna M; Kamei, Makoto; Weinstein, Brant M
OBJECTIVE: Understanding the mechanisms regulating normal and pathological angiogenesis is of great scientific and clinical interest. In this report, we show that mutations in 2 different aminoacyl-transfer RNA synthetases, threonyl tRNA synthetase (tarsy58) or isoleucyl tRNA synthetase (iarsy68), lead to similar increased branching angiogenesis in developing zebrafish. APPROACH AND RESULTS: The unfolded protein response pathway is activated by aminoacyl-transfer RNA synthetase deficiencies, and we show that unfolded protein response genes atf4, atf6, and xbp1, as well as the key proangiogenic ligand vascular endothelial growth factor (vegfaa), are all upregulated in tarsy58 and iarsy68 mutants. Finally, we show that the protein kinase RNA-like endoplasmic reticulum kinase-activating transcription factor 4 arm of the unfolded protein response pathway is necessary for both the elevated vegfaa levels and increased angiogenesis observed in tarsy58 mutants. CONCLUSIONS: Our results suggest that endoplasmic reticulum stress acts as a proangiogenic signal via unfolded protein response pathway-dependent upregulation of vegfaa.
PMCID:4808418
PMID: 26821951
ISSN: 1524-4636
CID: 2044032

Reck enables cerebrovascular development by promoting canonical Wnt signaling

Ulrich, Florian; Carretero-Ortega, Jorge; Menendez, Javier; Narvaez, Carlos; Sun, Belinda; Lancaster, Eva; Pershad, Valerie; Trzaska, Sean; Veliz, Evelyn; Kamei, Makoto; Prendergast, Andrew; Kidd, Kameha R; Shaw, Kenna M; Castranova, Daniel A; Pham, Van N; Lo, Brigid D; Martin, Benjamin L; Raible, David W; Weinstein, Brant M; Torres-Vazquez, Jesus
PMCID:4813290
PMID: 26980794
ISSN: 1477-9129
CID: 2047282

Reck enables cerebrovascular development by promoting canonical Wnt signaling

Ulrich, Florian; Carretero-Ortega, Jorge; Menendez, Javier; Narvaez, Carlos; Sun, Belinda; Lancaster, Eva; Pershad, Valerie; Trzaska, Sean; Veliz, Evelyn; Kamei, Makoto; Prendergast, Andrew; Kidd, Kameha R; Shaw, Kenna M; Castranova, Daniel A; Pham, Van N; Lo, Brigid D; Martin, Benjamin L; Raible, David W; Weinstein, Brant M; Torres-Vazquez, Jesus
The cerebral vasculature provides the massive blood supply that the brain needs to grow and survive. By acquiring distinctive cellular and molecular characteristics it becomes the Blood Brain Barrier (BBB), a selectively permeable and protective interface between the brain and the peripheral circulation that maintains the extra-cellular milieu permissive for neuronal activity. Accordingly, there is great interest in uncovering the mechanisms that modulate the formation and differentiation of the brain vasculature. By performing a forward genetic screen in zebrafish we isolated no food for thought (nfty72), a recessive late-lethal mutant that lacks most of the intra-cerebral Central Arteries (CtAs), but not other brain blood vessels. We found that the cerebral vascularization deficit of nfty72 is caused by an inactivating lesion in reck (reversion-inducing-cysteine-rich protein with Kazal motifs or ST15; Suppressor of Tumorigenicity 15 protein), which encodes a membrane-anchored tumor suppressor glycoprotein. Our findings highlight Reck as a novel and pivotal modulator of the canonical Wnt signaling pathway that acts in endothelial cells to enable intra-cerebral vascularization and proper expression of molecular markers associated with BBB formation. Additional studies with cultured endothelial cells suggest that, in other contexts, Reck impacts vascular biology via the Vascular Endothelial Growth Factor (VEGF) cascade. Together, our findings have broad implications for both vascular and cancer biology.
PMCID:4725199
PMID: 26657775
ISSN: 1477-9129
CID: 1877722

Development of functional hindbrain oculomotor circuitry independent of both vascularization and neuronal activity in larval zebrafish

Ulrich, Florian; Grove, Charlotte; Torres-Vázquez, Jesús; Baker, Robert
We investigated the contribution of blood vessel formation and neuronal excitability to the development of functional neural circuitry in larval zebrafish by analyzing oculomotor performance in response to visual and vestibular stimuli. To address the dependence of neuronal function on the presence of blood vessels, we compared wild type embryos to reck and cloche mutants that lacked intracerebral blood vessels. To test how neuronal excitability impacts neuronal development and intracerebral vascularization, we blocked neural activity using Tetraodotoxin (TTX) and Tricaine. In reck mutants, we found both slow phase horizontal tracking and fast phase resets with only a slightly reduced amplitude and bandwidth. Spontaneous saccades, eye position holding and vestibular gravitoinertial induced eye rotation were also present. All of these behaviors except for visual tracking were observed in cloche mutants that lacked any head vasculature. Thus, numerous oculomotor neuronal circuits spanning the forebrain, midbrain and hindbrain compartments, ending in motor innervations of the eye muscles, were correctly formed and generated appropriate oculomotor behaviors without blood vessels. However, our observations indicate that beginning at approximately six days, circulation was required for sustained behavioral performance. We further found that blocking neuronal excitability with either TTX or Tricaine up to 4-5 days post fertilization did not noticeably interfere with intracerebral blood vessel formation in wild type larvae. After removal of drug treatments, the oculomotor behaviors returned within hours. Thus, development of neuronal circuits that drive oculomotor performance does not require neuronal spiking or activity. Together these findings demonstrate that neither vascularization nor neuronal excitability are essential for the formation of numerous oculomotor nuclei with intricately designed connectivity and signal processing. We conclude that a genetic blueprint specifies early larval structural and physiological features, and this developmental strategy may be viewed as a unique adaptation required for early survival.
PMCID:6101672
PMID: 30135618
ISSN: 0975-9042
CID: 3246162

Origin, Specification, and Plasticity of the Great Vessels of the Heart

Nagelberg, Danielle; Wang, Jinhu; Su, Rina; Torres-Vazquez, Jesus; Targoff, Kimara L; Poss, Kenneth D; Knaut, Holger
The pharyngeal arch arteries (PAAs) are a series of paired embryonic blood vessels that give rise to several major arteries that connect directly to the heart. During development, the PAAs emerge from nkx2.5-expressing mesodermal cells and connect the dorsal head vasculature to the outflow tract of the heart. Despite their central role in establishing the circulatory system, the embryonic origins of the PAA progenitors are only coarsely defined, and the factors that specify them and their regenerative potential are unclear. Using fate mapping and mutant analysis, we find that PAA progenitors are derived from the tcf21 and nkx2.5 double-positive head mesoderm and require these two transcription factors for their specification and survival. Unexpectedly, cell ablation shows that the tcf21+; nkx2.5+ PAA progenitors are not required for PAA formation. We find that this compensation is due to the replacement of ablated tcf21+; nkx2.5+ PAA cells by endothelial cells from the dorsal head vasculature. Together, these studies assign the embryonic origin of the great vessel progenitors to the interface between the pharyngeal and cardiac mesoderm, identify the transcription factor code required for their specification, and reveal an unexpected plasticity in the formation of the great vessels.
PMCID:4546555
PMID: 26255850
ISSN: 1879-0445
CID: 1721552

Plexin D1 determines body fat distribution by regulating the type V collagen microenvironment in visceral adipose tissue

Minchin, James E N; Dahlman, Ingrid; Harvey, Christopher J; Mejhert, Niklas; Singh, Manvendra K; Epstein, Jonathan A; Arner, Peter; Torres-Vazquez, Jesus; Rawls, John F
Genome-wide association studies have implicated PLEXIN D1 (PLXND1) in body fat distribution and type 2 diabetes. However, a role for PLXND1 in regional adiposity and insulin resistance is unknown. Here we use in vivo imaging and genetic analysis in zebrafish to show that Plxnd1 regulates body fat distribution and insulin sensitivity. Plxnd1 deficiency in zebrafish induced hyperplastic morphology in visceral adipose tissue (VAT) and reduced lipid storage. In contrast, subcutaneous adipose tissue (SAT) growth and morphology were unaffected, resulting in altered body fat distribution and a reduced VAT:SAT ratio in zebrafish. A VAT-specific role for Plxnd1 appeared conserved in humans, as PLXND1 mRNA was positively associated with hypertrophic morphology in VAT, but not SAT. In zebrafish plxnd1 mutants, the effect on VAT morphology and body fat distribution was dependent on induction of the extracellular matrix protein collagen type V alpha 1 (col5a1). Furthermore, after high-fat feeding, zebrafish plxnd1 mutant VAT was resistant to expansion, and excess lipid was disproportionately deposited in SAT, leading to an even greater exacerbation of altered body fat distribution. Plxnd1-deficient zebrafish were protected from high-fat-diet-induced insulin resistance, and human VAT PLXND1 mRNA was positively associated with type 2 diabetes, suggesting a conserved role for PLXND1 in insulin sensitivity. Together, our findings identify Plxnd1 as a novel regulator of VAT growth, body fat distribution, and insulin sensitivity in both zebrafish and humans.
PMCID:4394244
PMID: 25831505
ISSN: 1091-6490
CID: 1519492

The role of Hath6, a newly identified shear-stress-responsive transcription factor, in endothelial cell differentiation and function

Fang, Fang; Wasserman, Scott M; Torres-Vazquez, Jesus; Weinstein, Brant; Cao, Feng; Li, Zongjin; Wilson, Kitchener D; Yue, Wen; Wu, Joseph C; Xie, Xiaoyan; Pei, Xuetao
The key regulators of endothelial differentiation that is induced by shear stress are mostly unclear. Human atonal homolog 6 (Hath6 or ATOH8) is an endothelial-selective and shear-stress-responsive transcription factor. In this study, we sought to elucidate the role of Hath6 in the endothelial specification of embryonic stem cells. In a stepwise human embryonic stem cell to endothelial cell (hESC-EC) induction system, Hath6 mRNA was upregulated synchronously with endothelial determination. Subsequently, gain-of-function and loss-of-function studies of Hath6 were performed using the hESC-EC induction model and endothelial cell lines. The overexpression of Hath6, which mimics shear stress treatment, resulted in an increased CD45(-)CD31(+)KDR(+) population, a higher tubular-structure-formation capacity and increased endothelial-specific gene expression. By contrast, the knockdown of Hath6 mRNA markedly decreased endothelial differentiation. Hath6 also facilitated the maturation of endothelial cells in terms of endothelial gene expression, tubular-structure formation and cell migration. We further demonstrated that the gene encoding eNOS is a direct target of Hath6 through a reporter system assay and western blot analysis, and that the inhibition of eNOS diminishes hESC-EC differentiation. These results suggest that eNOS plays a key role in linking Hath6 to the endothelial phenotype. Further in situ hybridization studies in zebrafish and mouse embryos indicated that homologs of Hath6 are involved in vasculogenesis and angiogenesis. This study provides the first confirmation of the positive impact of Hath6 on human embryonic endothelial differentiation and function. Moreover, we present a potential signaling pathway through which shear stress stimulates endothelial differentiation.
PMCID:3970556
PMID: 24463812
ISSN: 0021-9533
CID: 954622

Transgenic retinoic acid sensor lines in zebrafish indicate regions of available embryonic retinoic acid

Mandal, Amrita; Rydeen, Ariel; Anderson, Jane; Sorrell, Mollie R J; Zygmunt, Tomas; Torres-Vazquez, Jesus; Waxman, Joshua S
Background: Retinoic acid (RA) signaling plays a critical role in vertebrate development. Transcriptional reporters of RA signaling in zebrafish, thus far, have not reflected the broader availability of embryonic RA, necessitating additional tools to enhance our understanding of the spatial and temporal activity of RA signaling in vivo. Results: We have generated novel transgenic RA sensors in which a RA receptor (RAR) ligand-binding domain (RLBD) is fused to the Gal4 DNA binding domain (GDBD) or a VP16-GDBD (VPBD) construct. Stable transgenic lines expressing these proteins when crossed with UAS reporter lines are responsive to RA. Interestingly, the VPBD RA sensor is significantly more sensitive than the GDBD sensor and demonstrates there may be almost ubiquitous availability of RA within the early embryo. Using confocal microscopy to compare the expression of the GDBD RA sensor to our previously established RA signaling transcriptional reporter line, Tg(12XRARE:EGFP), illustrates these reporters have significant overlap, but that expression from the RA sensor is much broader. We also identify previously unreported domains of expression for the Tg(12XRARE:EGFP) line. Conclusions: Our novel RA sensor lines will be useful and complementary tools for studying RA signaling during development and anatomical structures independent of RA signaling. Developmental Dynamics, 2013. (c) 2013 Wiley Periodicals,Inc.
PMCID:3771353
PMID: 23703807
ISSN: 1058-8388
CID: 354292