Try a new search

Format these results:

Searched for:



Total Results:


Staphylococcus aureus induces a muted host response in human blood that blunts the recruitment of neutrophils

Zwack, Erin E; Chen, Ze; Devlin, Joseph C; Li, Zhi; Zheng, Xuhui; Weinstock, Ada; Lacey, Keenan A; Fisher, Edward A; Fenyö, David; Ruggles, Kelly V; Loke, P'ng; Torres, Victor J
PMID: 35881802
ISSN: 1091-6490
CID: 5276372

Structural basis for inhibition of the drug efflux pump NorA from Staphylococcus aureus

Brawley, Douglas N; Sauer, David B; Li, Jianping; Zheng, Xuhui; Koide, Akiko; Jedhe, Ganesh S; Suwatthee, Tiffany; Song, Jinmei; Liu, Zheng; Arora, Paramjit S; Koide, Shohei; Torres, Victor J; Wang, Da-Neng; Traaseth, Nathaniel J
Membrane protein efflux pumps confer antibiotic resistance by extruding structurally distinct compounds and lowering their intracellular concentration. Yet, there are no clinically approved drugs to inhibit efflux pumps, which would potentiate the efficacy of existing antibiotics rendered ineffective by drug efflux. Here we identified synthetic antigen-binding fragments (Fabs) that inhibit the quinolone transporter NorA from methicillin-resistant Staphylococcus aureus (MRSA). Structures of two NorA-Fab complexes determined using cryo-electron microscopy reveal a Fab loop deeply inserted in the substrate-binding pocket of NorA. An arginine residue on this loop interacts with two neighboring aspartate and glutamate residues essential for NorA-mediated antibiotic resistance in MRSA. Peptide mimics of the Fab loop inhibit NorA with submicromolar potency and ablate MRSA growth in combination with the antibiotic norfloxacin. These findings establish a class of peptide inhibitors that block antibiotic efflux in MRSA by targeting indispensable residues in NorA without the need for membrane permeability.
PMID: 35361990
ISSN: 1552-4469
CID: 5201392

Microbiome-Independent Effects of Antibiotics in a Murine Model of Nosocomial Infections

Lacey, Keenan A; Gonzalez, Sandra; Yeung, Frank; Putzel, Gregory; Podkowik, Magdalena; Pironti, Alejandro; Shopsin, Bo; Cadwell, Ken; Torres, Victor J
Methicillin-resistant Staphylococcus aureus (MRSA) is one of the most common causes of hospital-acquired pneumonia. To better manage patients with MRSA pneumonia, we require a greater understanding of the host-pathogen interactions during infection. MRSA research focuses on highly virulent and cytotoxic strains, which demonstrate robust phenotypes in animal models of infection. However, nosocomial infections are often caused by hospital-acquired MRSA (HA-MRSA) isolates that exhibit low cytotoxicity and few or no phenotypes in mice, thereby confounding mechanistic studies of pathogenesis. Consequently, virulence pathways utilized by HA-MRSA in nosocomial pneumonia are largely unknown. Here, we report that conditioning mice with broad-spectrum antibiotics lowers the barrier to pneumonia, thereby transforming otherwise avirulent HA-MRSA isolates into lethal pathogens. HA-MRSA isolates are avirulent in gnotobiotic mice, mimicking results in conventional animals. Thus, the observed enhanced susceptibility to infection in antibiotic-treated mice is not due to depletion of the microbiota. More generally, we found that antibiotic conditioning leads to increased susceptibility to infection by diverse antimicrobial-resistant (AMR) pathogens of low virulence. Treatment with antibiotics leads to dehydration and malnutrition, suggesting a potential role for these clinically relevant and reducible hospital complications in susceptibility to pathogens. In sum, the model described here mitigates the impact of low virulence in immunocompetent mice, providing a convenient model to gain fundamental insight into the pathogenesis of nosocomial pathogens. IMPORTANCE Antimicrobial-resistant (AMR) pathogens are responsible for over 2.8 million infections and over 35,000 deaths per year in the United States. To study these microbes, animal models that are susceptible to these pathogens are required. However, many of these pathogens exhibit low virulence in conventional mice, which has negatively impacted mechanistic studies. Here, we show that mice treated with antibiotics in their drinking water become exquisitely susceptible to low-virulence AMR pathogens. Surprisingly, the increased susceptibility was independent of the impact of antibiotics on the microbiome and seems to be due to an unintended consequence of antibiotic treatment: weight loss due to dehydration and caloric restriction. Unlike other models used to sensitize mice to low-virulence pathogens, our model does not reduce phagocyte numbers. Thus, here, we describe an immunocompetent mouse model to facilitate the identification of novel targets and accelerate the development of preventives and therapeutics to combat infections by AMR pathogens.
PMID: 35612285
ISSN: 2150-7511
CID: 5277522

Human OTULIN haploinsufficiency impairs cell-intrinsic immunity to staphylococcal α-toxin

Spaan, András N; Neehus, Anna-Lena; Laplantine, Emmanuel; Staels, Frederik; Ogishi, Masato; Seeleuthner, Yoann; Rapaport, Franck; Lacey, Keenan A; Van Nieuwenhove, Erika; Chrabieh, Maya; Hum, David; Migaud, Mélanie; Izmiryan, Araksya; Lorenzo, Lazaro; Kochetkov, Tatiana; Heesterbeek, Dani A C; Bardoel, Bart W; DuMont, Ashley L; Dobbs, Kerry; Chardonnet, Solenne; Heissel, Søren; Baslan, Timour; Zhang, Peng; Yang, Rui; Bogunovic, Dusan; Wunderink, Herman F; Haas, Pieter-Jan A; Molina, Henrik; Van Buggenhout, Griet; Lyonnet, Stanislas; Notarangelo, Luigi D; Seppänen, Mikko R J; Weil, Robert; Seminario, Gisela; Gomez-Tello, Héctor; Wouters, Carine; Mesdaghi, Mehrnaz; Shahrooei, Mohammad; Bossuyt, Xavier; Sag, Erdal; Topaloglu, Rezan; Ozen, Seza; Leavis, Helen L; van Eijk, Maarten M J; Bezrodnik, Liliana; Blancas Galicia, Lizbeth; Hovnanian, Alain; Nassif, Aude; Bader-Meunier, Brigitte; Neven, Bénédicte; Meyts, Isabelle; Schrijvers, Rik; Puel, Anne; Bustamante, Jacinta; Aksentijevich, Ivona; Kastner, Daniel L; Torres, Victor J; Humblet-Baron, Stéphanie; Liston, Adrian; Abel, Laurent; Boisson, Bertrand; Casanova, Jean-Laurent
The molecular basis of interindividual clinical variability upon infection with Staphylococcus aureus is unclear. We describe patients with haploinsufficiency for the linear deubiquitinase OTULIN, encoded by a gene on chromosome 5p. Patients suffer from episodes of life-threatening necrosis, typically triggered by S. aureus infection. The disorder is phenocopied in patients with the 5p- (Cri-du-Chat) chromosomal deletion syndrome. OTULIN haploinsufficiency causes an accumulation of linear ubiquitin in dermal fibroblasts, but tumor necrosis factor receptor-mediated nuclear factor κB signaling remains intact. Blood leukocyte subsets are unaffected. The OTULIN-dependent accumulation of caveolin-1 in dermal fibroblasts, but not leukocytes, facilitates the cytotoxic damage inflicted by the staphylococcal virulence factor α-toxin. Naturally elicited antibodies against α-toxin contribute to incomplete clinical penetrance. Human OTULIN haploinsufficiency underlies life-threatening staphylococcal disease by disrupting cell-intrinsic immunity to α-toxin in nonleukocytic cells.
PMID: 35587511
ISSN: 1095-9203
CID: 5277492

Pathogen Species Is Associated With Mortality in Nosocomial Bloodstream Infection in Patients With COVID-19

Gago, Juan; Filardo, Thomas D; Conderino, Sarah; Magaziner, Samuel J; Dubrovskaya, Yanina; Inglima, Kenneth; Iturrate, Eduardo; Pironti, Alejandro; Schluter, Jonas; Cadwell, Ken; Hochman, Sarah; Li, Huilin; Torres, Victor J; Thorpe, Lorna E; Shopsin, Bo
Background/UNASSIGNED:The epidemiology of nosocomial bloodstream infections (NBSIs) in patients with coronavirus disease 2019 (COVID-19) is poorly understood, due in part to substantial disease heterogeneity resulting from multiple potential pathogens. Methods/UNASSIGNED:We identified risk factors for NBSIs and examined the association between NBSIs and mortality in a retrospective cohort of patients hospitalized with COVID-19 in 2 New York City hospitals during the height of the pandemic. We adjusted for the potential effects of factors likely to confound that association, including age, race, illness severity upon admission, and underlying health status. Results/UNASSIGNED:infections did not have an identifiable source and were not associated with common risk factors for infection by these organisms. Conclusions/UNASSIGNED:Pathogen species and mortality exhibited temporal differences. Early recognition of risk factors among COVID-19 patients could potentially decrease NBSI-associated mortality through early COVID-19 and antimicrobial treatment.
PMID: 35607701
ISSN: 2328-8957
CID: 5283852

The Major Autolysin Atl Regulates the Virulence of Staphylococcus aureus by Controlling the Sorting of LukAB

Zheng, Xuhui; Ma, Sheya Xiao; St John, Amelia; Torres, Victor J
Infections caused by the Gram-positive bacterium Staphylococcus aureus remain a significant health threat globally. The production of bicomponent pore-forming leukocidins plays an important role in S. aureus pathogenesis. Transcriptionally, these toxins are primarily regulated by the Sae and Agr regulatory systems. However, the posttranslational regulation of these toxins is largely unexplored. In particular, one of the leukocidins, LukAB, has been shown to be both secreted into the extracellular milieu and associated with the bacterial cell envelope. Here, we report that a major cell wall hydrolase, autolysin (Atl), controls the sorting of LukAB from the cell envelope to the extracellular milieu, an effect independent of transcriptional regulation. By influencing the sorting of LukAB, Atl modulates S. aureus cytotoxicity toward primary human neutrophils. Mechanistically, we found that the reduction in peptidoglycan cleavage and increased LukAB secretion in the atl mutant can be reversed through the supplementation of exogenous mutanolysin. Altogether, our study revealed that the cell wall hydrolase activity of Atl and the cleavage of peptidoglycan play an important role in controlling the sorting of S. aureus toxins during secretion.
PMID: 35258336
ISSN: 1098-5522
CID: 5215422

Vaccination With Detoxified Leukocidin AB Reduces Bacterial Load in a Staphylococcus aureus Minipig Deep Surgical Wound Infection Model

Fernandez, Jeffrey; Sanders, Holly; Henn, Jessica; Wilson, Jolaine M; Malone, Danielle; Buoninfante, Alessandra; Willms, Matthew; Chan, Rita; DuMont, Ashley L; McLahan, Craig; Grubb, Kaitlyn; Romanello, Anthony; van den Dobbelsteen, Germie; Torres, Victor J; Poolman, Jan T
Vaccines against Staphylococcus aureus have eluded researchers for >3 decades while the burden of staphylococcal diseases has increased. Early vaccine attempts mainly used rodents to characterize preclinical efficacy, and all subsequently failed in human clinical efficacy trials. More recently, leukocidin AB (LukAB) has gained interest as a vaccine antigen. We developed a minipig deep surgical wound infection model offering 3 independent efficacy readouts: bacterial load at the superficial and at the deep-seated surgical site, and dissemination of bacteria. Due to similarities with humans, minipigs are an attractive option to study novel vaccine candidates. With this model, we characterized the efficacy of a LukAB toxoid as vaccine candidate. Compared to control animals, a 3-log reduction of bacteria at the deep-seated surgical site was observed in LukAB-treated minipigs and dissemination of bacteria was dramatically reduced. Therefore, LukAB toxoids may be a useful addition to S. aureus vaccines and warrant further study.
PMID: 33895843
ISSN: 1537-6613
CID: 5200022

Genome-Wide CRISPR-Cas9 Screen Does Not Identify Host Factors Modulating Streptococcus agalactiae β-Hemolysin/Cytolysin-Induced Cell Death

Shahi, Ifrah; Llaneras, Cristina N; Perelman, Sofya S; Torres, Victor J; Ratner, Adam J
Pore-forming toxins (PFTs) are commonly produced by pathogenic bacteria, and understanding them is key to the development of virulence-targeted therapies. Streptococcus agalactiae, or group B Streptococcus (GBS), produces several factors that enhance its pathogenicity, including the PFT β-hemolysin/cytolysin (βhc). Little is understood about the cellular factors involved in βhc pore formation. We conducted a whole-genome CRISPR-Cas9 forward genetic screen to identify host genes that might contribute to βhc pore formation and cell death. While the screen identified the established receptor, CD59, in control experiments using the toxin intermedilysin (ILY), no clear candidate genes were identified that were required for βhc-mediated lethality. Of the top targets from the screen, two genes involved in membrane remodeling and repair represented candidates that might modulate the kinetics of βhc-induced cell death. Upon attempted validation of the results using monoclonal cell lines with targeted disruption of these genes, no effect on βhc-mediated cell lysis was observed. The CRISPR-Cas9 screen results are consistent with the hypothesis that βhc does not require a single nonessential host factor to mediate target cell death. IMPORTANCE CRISPR-Cas9 forward genetic screens have been used to identify host cell targets required by bacterial toxins. They have been used successfully to both verify known targets and elucidate novel host factors required by toxins. Here, we show that this approach fails to identify host factors required for cell death due to βhc, a toxin required for GBS virulence. These data suggest that βhc may not require a host cell receptor for toxin function or may require a host receptor that is an essential gene and would not be identified using this screening strategy.
PMID: 35196804
ISSN: 2165-0497
CID: 5175092

In-Vitro Cytotoxicity and Clinical Correlates of MRSA Bacteremia

McConville, Thomas H; Austin, Eloise D; Geng, Wenjing; Shi, Qiuhu; Balasubramanian, Divya; Kubin, Christine J; Torres, Victor J; Uhlemann, Anne-Catrin
Methicillin-resistant Staphylococcus aureus (MRSA) bloodstream infections are associated with significant morbidity and mortality. MRSA secretes a number of virulence factors and pore-forming toxins that enable tissue invasion. Prior studies have found associations between decreased toxin production and poor outcomes in invasive MRSA infection, particularly in pneumonia. In this retrospective observational cohort study of MRSA bacteremia in adult patients 2007-2015, we examined whether cytotoxicity was associated with 30-day mortality. Isolates were obtained from 776 patients and screened for cytotoxicity in a human HL-60 cell model, antimicrobial susceptibility and spa type, and clinical data were abstracted from charts. We did not find an association between low cytotoxic activity and 30-day mortality in univariate logistic regression analyses. There was a difference in distribution of the genotypes across cytotoxicity phenotypes, with spa-CC008 accounting for a larger proportion of isolates in the high cytotoxicity group. Isolates with a skin and soft tissue primary infective site had a higher median cytotoxicity. There was no association between cytotoxicity and host factors such as age or comorbidity burden. The isolates in our study came from heterogeneous primary sites of infection and were predominantly from spa-CC002 and spa-CC008 lineages, so it is possible that findings in prior studies reflect a different distribution in genotypes and clinical syndromes. Overall, in this large study of cytotoxicity of MRSA bloodstream isolates, we did not find the low cytotoxicity phenotype to be predictive of poor outcomes in MRSA bacteremia.
PMID: 34748383
ISSN: 1098-6596
CID: 5050272

Analysing the fitness cost of antibiotic resistance to identify targets for combination antimicrobials

Rasouly, Aviram; Shamovsky, Yosef; Epshtein, Vitaly; Tam, Kayan; Vasilyev, Nikita; Hao, Zhitai; Quarta, Giulio; Pani, Bibhusita; Li, Lingting; Vallin, Carmen; Shamovsky, Ilya; Krishnamurthy, Shankarling; Shtilerman, Aaron; Vantine, Samantha; Torres, Victor J; Nudler, Evgeny
Mutations in the rifampicin (Rif)-binding site of RNA polymerase (RNAP) confer antibiotic resistance and often have global effects on transcription that compromise fitness and stress tolerance of resistant mutants. We suggested that the non-essential genome, through its impact on the bacterial transcription cycle, may represent an untapped source of targets for combination antimicrobial therapies. Using transposon sequencing, we carried out a genome-wide analysis of fitness cost in a clinically common rpoB H526Y mutant. We find that genes whose products enable increased transcription elongation rates compound the fitness costs of resistance whereas genes whose products function in cell wall synthesis and division mitigate it. We validate our findings by showing that the cell wall synthesis and division defects of rpoB H526Y result from an increased transcription elongation rate that is further exacerbated by the activity of the uracil salvage pathway and unresponsiveness of the mutant RNAP to the alarmone ppGpp. We applied our findings to identify drugs that inhibit more readily rpoB H526Y and other RifR alleles from the same phenotypic class. Thus, genome-wide analysis of fitness cost of antibiotic-resistant mutants should expedite the discovery of new combination therapies and delineate cellular pathways that underlie the molecular mechanisms of cost.
PMID: 34697460
ISSN: 2058-5276
CID: 5042332