Searched for: person:veraaj01
in-biosketch:yes
Noninvasive quantification of axon radii using diffusion MRI
Veraart, Jelle; Nunes, Daniel; Rudrapatna, Umesh; Fieremans, Els; Jones, Derek K; Novikov, Dmitry S; Shemesh, Noam
Axon caliber plays a crucial role in determining conduction velocity and, consequently, in the timing and synchronization of neural activation. Noninvasive measurement of axon radii could have significant impact on the understanding of healthy and diseased neural processes. Until now, accurate axon radius mapping has eluded in vivo neuroimaging, mainly due to a lack of sensitivity of the MRI signal to micron-sized axons. Here, we show how - when confounding factors such as extra-axonal water and axonal orientation dispersion are eliminated - heavily diffusion-weighted MRI signals become sensitive to axon radii. However, diffusion MRI is only capable of estimating a single metric, the effective radius, representing the entire axon radius distribution within a voxel that emphasizes the larger axons. Our findings, both in rodents and humans, enable noninvasive mapping of critical information on axon radii, as well as resolve the long-standing debate on whether axon radii can be quantified.
PMCID:7015669
PMID: 32048987
ISSN: 2050-084x
CID: 4304432
In vivo evidence of microstructural hypo-connectivity of brain white matter in 22q11.2 deletion syndrome
Raven, Erika P; Veraart, Jelle; Kievit, Rogier A; Genc, Sila; Ward, Isobel L; Hall, Jessica; Cunningham, Adam; Doherty, Joanne; van den Bree, Marianne B M; Jones, Derek K
22q11.2 deletion syndrome, or 22q11.2DS, is a genetic syndrome associated with high rates of schizophrenia and autism spectrum disorders, in addition to widespread structural and functional abnormalities throughout the brain. Experimental animal models have identified neuronal connectivity deficits, e.g., decreased axonal length and complexity of axonal branching, as a primary mechanism underlying atypical brain development in 22q11.2DS. However, it is still unclear whether deficits in axonal morphology can also be observed in people with 22q11.2DS. Here, we provide an unparalleled in vivo characterization of white matter microstructure in participants with 22q11.2DS (12-15 years) and those undergoing typical development (8-18 years) using a customized magnetic resonance imaging scanner which is sensitive to axonal morphology. A rich array of diffusion MRI metrics are extracted to present microstructural profiles of typical and atypical white matter development, and provide new evidence of connectivity differences in individuals with 22q11.2DS. A recent, large-scale consortium study of 22q11.2DS identified higher diffusion anisotropy and reduced overall diffusion mobility of water as hallmark microstructural alterations of white matter in individuals across a wide age range (6-52 years). We observed similar findings across the white matter tracts included in this study, in addition to identifying deficits in axonal morphology. This, in combination with reduced tract volume measurements, supports the hypothesis that abnormal microstructural connectivity in 22q11.2DS may be mediated by densely packed axons with disproportionately small diameters. Our findings provide insight into the in vivo white matter phenotype of 22q11.2DS, and promote the continued investigation of shared features in neurodevelopmental and psychiatric disorders.
PMID: 37495890
ISSN: 1476-5578
CID: 5591732
Toward more robust and reproducible diffusion kurtosis imaging
Henriques, Rafael N; Jespersen, Sune N; Jones, Derek K; Veraart, Jelle
PURPOSE/OBJECTIVE:The general utility of diffusion kurtosis imaging (DKI) is challenged by its poor robustness to imaging artifacts and thermal noise that often lead to implausible kurtosis values. THEORY AND METHODS/UNASSIGNED:A robust scalar kurtosis index can be estimated from powder-averaged diffusion-weighted data. We introduce a novel DKI estimator that uses this scalar kurtosis index as a proxy for the mean kurtosis to regularize the fit. RESULTS:The regularized DKI estimator improves the robustness and reproducibility of the kurtosis metrics and results in parameter maps with enhanced quality and contrast. CONCLUSION/CONCLUSIONS:Our novel DKI estimator promotes the wider use of DKI in clinical research and potentially diagnostics by improving the reproducibility and precision of DKI fitting and, as such, enabling enhanced visual, quantitative, and statistical analyses of DKI parameters.
PMID: 33829542
ISSN: 1522-2594
CID: 4839472
On the scaling behavior of water diffusion in human brain white matter
Veraart, Jelle; Fieremans, Els; Novikov, Dmitry S
Development of therapies for neurological disorders depends on our ability to non-invasively diagnose and monitor the progression of underlying pathologies at the cellular level. Physics and physiology limit the resolution of human MRI to be orders of magnitude coarser than cell dimensions. Here we identify and quantify the MRI signal coming from within micrometer-thin axons in human white matter tracts in vivo, by utilizing the sensitivity of diffusion MRI to Brownian motion of water molecules restricted by cell walls. We study a specific power-law scaling of the diffusion MRI signal with the diffusion weighting, predicted for water confined to narrow axons, and quantify axonal water fraction and orientation dispersion.
PMID: 30292815
ISSN: 1095-9572
CID: 3334772
Considerations and recommendations from the ISMRM diffusion study group for preclinical diffusion MRI: Part 2-Ex vivo imaging: Added value and acquisition
Schilling, Kurt G; Grussu, Francesco; Ianus, Andrada; Hansen, Brian; Howard, Amy F D; Barrett, Rachel L C; Aggarwal, Manisha; Michielse, Stijn; Nasrallah, Fatima; Syeda, Warda; Wang, Nian; Veraart, Jelle; Roebroeck, Alard; Bagdasarian, Andrew F; Eichner, Cornelius; Sepehrband, Farshid; Zimmermann, Jan; Soustelle, Lucas; Bowman, Christien; Tendler, Benjamin C; Hertanu, Andreea; Jeurissen, Ben; Verhoye, Marleen; Frydman, Lucio; van de Looij, Yohan; Hike, David; Dunn, Jeff F; Miller, Karla; Landman, Bennett A; Shemesh, Noam; Anderson, Adam; McKinnon, Emilie; Farquharson, Shawna; Dell'Acqua, Flavio; Pierpaoli, Carlo; Drobnjak, Ivana; Leemans, Alexander; Harkins, Kevin D; Descoteaux, Maxime; Xu, Duan; Huang, Hao; Santin, Mathieu D; Grant, Samuel C; Obenaus, Andre; Kim, Gene S; Wu, Dan; Le Bihan, Denis; Blackband, Stephen J; Ciobanu, Luisa; Fieremans, Els; Bai, Ruiliang; Leergaard, Trygve B; Zhang, Jiangyang; Dyrby, Tim B; Johnson, G Allan; Cohen-Adad, Julien; Budde, Matthew D; Jelescu, Ileana O
The value of preclinical diffusion MRI (dMRI) is substantial. While dMRI enables in vivo non-invasive characterization of tissue, ex vivo dMRI is increasingly being used to probe tissue microstructure and brain connectivity. Ex vivo dMRI has several experimental advantages including higher SNR and spatial resolution compared to in vivo studies, and enabling more advanced diffusion contrasts for improved microstructure and connectivity characterization. Another major advantage of ex vivo dMRI is the direct comparison with histological data, as a crucial methodological validation. However, there are a number of considerations that must be made when performing ex vivo experiments. The steps from tissue preparation, image acquisition and processing, and interpretation of results are complex, with many decisions that not only differ dramatically from in vivo imaging of small animals, but ultimately affect what questions can be answered using the data. This work represents "Part 2" of a three-part series of recommendations and considerations for preclinical dMRI. We describe best practices for dMRI of ex vivo tissue, with a focus on the value that ex vivo imaging adds to the field of dMRI and considerations in ex vivo image acquisition. We first give general considerations and foundational knowledge that must be considered when designing experiments. We briefly describe differences in specimens and models and discuss why some may be more or less appropriate for different studies. We then give guidelines for ex vivo protocols, including tissue fixation, sample preparation, and MR scanning. In each section, we attempt to provide guidelines and recommendations, but also highlight areas for which no guidelines exist (and why), and where future work should lie. An overarching goal herein is to enhance the rigor and reproducibility of ex vivo dMRI acquisitions and analyses, and thereby advance biomedical knowledge.
PMCID:11971501
PMID: 40035293
ISSN: 1522-2594
CID: 5818552
Enhanced structural brain connectivity analyses using high diffusion-weighting strengths
Yu, Leyao; Flinker, Adeen; Veraart, Jelle
Tractography is a unique modality for the in vivo measurement of structural connectivity, crucial for understanding brain networks and neurological conditions. With increasing b-value, the diffusion-weighting signal becomes primarily sensitive to the intra-axonal signal. However, it remains unclear how tractography is affected by this observation. Here, using open-source datasets, we showed that at high b-values, DWI reduces the uncertainty in estimating fiber orientations. Specifically, we found the ratio of biologically-meaningful longer-range connections increases, accompanied with downstream impact of redistribution of connectome and network metrics. However, when going beyond b = 6000 s/mm2, the loss of SNR imposed a penalty. Lastly, we showed that the data reaches satisfactory reproducibility with b-values above 1200 s/mm2. Overall, the results suggest that using b-values above 2500 s/mm2 is essential for more accurate connectome reconstruction by reducing uncertainty in fiber orientation estimation, supporting the use of higher b-value protocols in standard diffusion MRI scans and pipelines.
PMID: 40369308
ISSN: 1863-2661
CID: 5844452
Denoising Improves Cross-Scanner and Cross-Protocol Test-Retest Reproducibility of Diffusion Tensor and Kurtosis Imaging
Ades-Aron, Benjamin; Coelho, Santiago; Lemberskiy, Gregory; Veraart, Jelle; Baete, Steven H; Shepherd, Timothy M; Novikov, Dmitry S; Fieremans, Els
The clinical translation of diffusion magnetic resonance imaging (dMRI)-derived quantitative contrasts hinges on robust reproducibility, minimizing both same-scanner and cross-scanner variability. As multi-site data sets, including multi-shell dMRI, expand in scope, enhancing reproducibility across variable MRI systems and MRI protocols becomes crucial. This study evaluates the reproducibility of diffusion kurtosis imaging (DKI) metrics (beyond conventional diffusion tensor imaging (DTI)), at the voxel and region-of-interest (ROI) levels on magnitude and complex-valued dMRI data, using denoising with and without harmonization. We compared same-scanner, cross-scanner, and cross-protocol variability for a multi-shell dMRI protocol (2-mm isotropic resolution, b = 0, 1000, 2000 s/mm2) in 20 subjects. We first evaluated the effectiveness of Marchenko-Pastur Principal Component Analysis (MPPCA) based denoising strategies for both magnitude and complex data to mitigate noise-induced bias and variance, to improve dMRI parametric maps and reproducibility. Next, we examined the impact of denoising under different population analysis approaches, specifically comparing voxel-wise versus region of interest (ROI)-based methods. We also evaluated the role of denoising when harmonizing dMRI across scanners and protocols. The results indicate that DTI and DKI maps visually improve after MPPCA denoising, with noticeably fewer outliers in kurtosis maps. Denoising, either using magnitude or complex dMRI, enhances voxel-wise reproducibility, with test-retest variability of kurtosis indices reduced from 15%-20% without denoising to 5%-10% after denoising. Complex dMRI denoising reduces the noise floor by up to 60%. Denoising not only reduced variability across scans and protocols, but also increased statistical power for low SNR voxel-wise comparisons when comparing cross sectional groups. In conclusion, MPPCA denoising, either over magnitude or complex dMRI data, enhances the reproducibility and precision of higher-order diffusion metrics across same-scanner, cross-scanner, and cross-protocol assessments. The enhancement in data quality and precision facilitates the broader application and acceptance of these advanced imaging techniques in both clinical practice and large-scale neuroimaging studies.
PMCID:11885890
PMID: 40051327
ISSN: 1097-0193
CID: 5809852
Considerations and recommendations from the ISMRM Diffusion Study Group for preclinical diffusion MRI: Part 3-Ex vivo imaging: Data processing, comparisons with microscopy, and tractography
Schilling, Kurt G; Howard, Amy F D; Grussu, Francesco; Ianus, Andrada; Hansen, Brian; Barrett, Rachel L C; Aggarwal, Manisha; Michielse, Stijn; Nasrallah, Fatima; Syeda, Warda; Wang, Nian; Veraart, Jelle; Roebroeck, Alard; Bagdasarian, Andrew F; Eichner, Cornelius; Sepehrband, Farshid; Zimmermann, Jan; Soustelle, Lucas; Bowman, Christien; Tendler, Benjamin C; Hertanu, Andreea; Jeurissen, Ben; Verhoye, Marleen; Frydman, Lucio; van de Looij, Yohan; Hike, David; Dunn, Jeff F; Miller, Karla; Landman, Bennett A; Shemesh, Noam; Anderson, Adam; McKinnon, Emilie; Farquharson, Shawna; Dell'Acqua, Flavio; Pierpaoli, Carlo; Drobnjak, Ivana; Leemans, Alexander; Harkins, Kevin D; Descoteaux, Maxime; Xu, Duan; Huang, Hao; Santin, Mathieu D; Grant, Samuel C; Obenaus, Andre; Kim, Gene S; Wu, Dan; Le Bihan, Denis; Blackband, Stephen J; Ciobanu, Luisa; Fieremans, Els; Bai, Ruiliang; Leergaard, Trygve B; Zhang, Jiangyang; Dyrby, Tim B; Johnson, G Allan; Cohen-Adad, Julien; Budde, Matthew D; Jelescu, Ileana O
Preclinical diffusion MRI (dMRI) has proven value in methods development and validation, characterizing the biological basis of diffusion phenomena, and comparative anatomy. While dMRI enables in vivo non-invasive characterization of tissue, ex vivo dMRI is increasingly being used to probe tissue microstructure and brain connectivity. Ex vivo dMRI has several experimental advantages that facilitate high spatial resolution and high SNR images, cutting-edge diffusion contrasts, and direct comparison with histological data as a methodological validation. However, there are a number of considerations that must be made when performing ex vivo experiments. The steps from tissue preparation, image acquisition and processing, and interpretation of results are complex, with many decisions that not only differ dramatically from in vivo imaging of small animals, but ultimately affect what questions can be answered using the data. This work concludes a three-part series of recommendations and considerations for preclinical dMRI. Herein, we describe best practices for dMRI of ex vivo tissue, with a focus on image pre-processing, data processing, and comparisons with microscopy. In each section, we attempt to provide guidelines and recommendations but also highlight areas for which no guidelines exist (and why), and where future work should lie. We end by providing guidelines on code sharing and data sharing and point toward open-source software and databases specific to small animal and ex vivo imaging.
PMID: 40008460
ISSN: 1522-2594
CID: 5800922
Considerations and recommendations from the ISMRM diffusion study group for preclinical diffusion MRI: Part 1: In vivo small-animal imaging
Jelescu, Ileana O; Grussu, Francesco; Ianus, Andrada; Hansen, Brian; Barrett, Rachel L C; Aggarwal, Manisha; Michielse, Stijn; Nasrallah, Fatima; Syeda, Warda; Wang, Nian; Veraart, Jelle; Roebroeck, Alard; Bagdasarian, Andrew F; Eichner, Cornelius; Sepehrband, Farshid; Zimmermann, Jan; Soustelle, Lucas; Bowman, Christien; Tendler, Benjamin C; Hertanu, Andreea; Jeurissen, Ben; Verhoye, Marleen; Frydman, Lucio; van de Looij, Yohan; Hike, David; Dunn, Jeff F; Miller, Karla; Landman, Bennett A; Shemesh, Noam; Anderson, Adam; McKinnon, Emilie; Farquharson, Shawna; Dell'Acqua, Flavio; Pierpaoli, Carlo; Drobnjak, Ivana; Leemans, Alexander; Harkins, Kevin D; Descoteaux, Maxime; Xu, Duan; Huang, Hao; Santin, Mathieu D; Grant, Samuel C; Obenaus, Andre; Kim, Gene S; Wu, Dan; Le Bihan, Denis; Blackband, Stephen J; Ciobanu, Luisa; Fieremans, Els; Bai, Ruiliang; Leergaard, Trygve B; Zhang, Jiangyang; Dyrby, Tim B; Johnson, G Allan; Cohen-Adad, Julien; Budde, Matthew D; Schilling, Kurt G
Small-animal diffusion MRI (dMRI) has been used for methodological development and validation, characterizing the biological basis of diffusion phenomena, and comparative anatomy. The steps from animal setup and monitoring, to acquisition, analysis, and interpretation are complex, with many decisions that may ultimately affect what questions can be answered using the resultant data. This work aims to present selected considerations and recommendations from the diffusion community on best practices for preclinical dMRI of in vivo animals. We describe the general considerations and foundational knowledge that must be considered when designing experiments. We briefly describe differences in animal species and disease models and discuss why some may be more or less appropriate for different studies. We, then, give recommendations for in vivo acquisition protocols, including decisions on hardware, animal preparation, and imaging sequences, followed by advice for data processing including preprocessing, model-fitting, and tractography. Finally, we provide an online resource that lists publicly available preclinical dMRI datasets and software packages to promote responsible and reproducible research. In each section, we attempt to provide guides and recommendations, but also highlight areas for which no guidelines exist (and why), and where future work should focus. Although we mainly cover the central nervous system (on which most preclinical dMRI studies are focused), we also provide, where possible and applicable, recommendations for other organs of interest. An overarching goal is to enhance the rigor and reproducibility of small animal dMRI acquisitions and analyses, and thereby advance biomedical knowledge.
PMID: 40008568
ISSN: 1522-2594
CID: 5800952
A Site-Wise Reliability Analysis of the ABCD Diffusion Fractional Anisotropy and Cortical Thickness: Impact of Scanner Platforms
Pan, Yezhi; Hong, L Elliot; Acheson, Ashley; Thompson, Paul M; Jahanshad, Neda; Zhu, Alyssa H; Yu, Jiaao; Chen, Chixiang; Ma, Tianzhou; Liu, Ho-Ling; Veraart, Jelle; Fieremans, Els; Karcher, Nicole R; Kochunov, Peter; Chen, Shuo
The Adolescent Brain and Cognitive Development (ABCD) project is the largest study of adolescent brain development. ABCD longitudinally tracks 11,868 participants aged 9-10 years from 21 sites using standardized protocols for multi-site MRI data collection and analysis. While the multi-site and multi-scanner study design enhances the robustness and generalizability of analysis results, it may also introduce nonbiological variances including scanner-related variations, subject motion, and deviations from protocols. ABCD imaging data were collected biennially within a period of ongoing maturation in cortical thickness and integrity of cerebral white matter. These changes can bias the classical test-retest methodologies, such as intraclass correlation coefficients (ICC). We developed a site-wise adaptive ICC (AICC) to evaluate the reliability of imaging-derived phenotypes while accounting for ongoing brain development. AICC iteratively estimates the population-level age-related brain development trajectory using a weighted mixed model and updates age-corrected site-wise reliability until convergence. We evaluated the test-retest reliability of regional fractional anisotropy (FA) measures from diffusion tensor imaging and cortical thickness (CT) from structural MRI data for each site. The mean AICC for 20 FA tracts across sites was 0.61 ± 0.19, lower than the mean AICC for CT in 34 regions across sites, 0.76 ± 0.12. Remarkably, sites using Siemens scanners consistently showed significantly higher AICC values compared with those using GE/Philips scanners for both FA (AICC = 0.71 ± 0.12 vs. 0.46 ± 0.17, p < 0.001) and CT (AICC = 0.80 ± 0.10 vs. 0.69 ± 0.11, p < 0.001). These findings demonstrate site-and-scanner related variations in data quality and underscore the necessity for meticulous data curation in subsequent association analyses.
PMCID:11551787
PMID: 39526419
ISSN: 1097-0193
CID: 5752602