Try a new search

Format these results:

Searched for:

person:vermas02

in-biosketch:true

Total Results:

32


Simulating nothing: Recreating the mundane to improve ECMO competency [Meeting Abstract]

Toy, B; Dapul, H; Fisher, J; Cicalese, E; Verma, S; Chopra, A
Introduction/Aim: NYU Langone Health's first neonatal ECMO patient was in March 2015, marking the start of the Pediatric and Neonatal ECMO Program within the institution. Since then, our program averages 5 ECMO patients per fiscal year (September 1 to August 31). A core ECMO Team, consisting of a Medical Director, a Surgical Director, an ECMO coordinator, 2 Chiefs of Perfusion, and 3 ECMO Intensivists, was identified to establish a reservoir of ECMO expertise within our new, low volume ECMO program. When a patient requires ECMO support, the core ECMO Team collaborates with the multidisciplinary ICU team to optimize both patient and circuit management. The teams provide concurrent care with the ECMO Team overseeing all ECMO-related decision making. Despite having the core ECMO Team as a resource during each ECMO case, a low volume of ECMO patients per year augments slower institutional learning and highlights the need for more frequent educational opportunities. The core ECMO Team worked together to create a recurring multidisciplinary Pediatric ECMO In-situ Simulation to bridge the educational gap in a new, low volume ECMO center. Material and Methods: The goal of establishing Pediatric ECMO In-Situ Simulation was to have either a real life patient on ECMO support or have a simulated ECMO patient once a month to establish routine ECMO exposure and promote multidisciplinary learning and competency. The first simulation session took place in September 2017. For 9 consecutive months, we achieved this goal with 4 real life ECMO patients and 5 simulated ECMO patients. Each simulation session took place over 4 hours and included a complete critical care team, consisting of an ICU Attending Physician, an Advanced Practice Provider, a Resident, 2 Critical Care Nurses, a Perfusionist, and a Respiratory Therapist. Pre-and postsimulation, participants completed self-assessments and knowledge tests, which were then, analyzed using the Wilcoxon Signed-rank test. Simulation logistics included a high fidelity simulation mannequin that was connected to a running ECMO circuit, as well as IV infusions and a mechanical ventilator. Simulation medications, fluids, blood products, and bedside supplies were readily available for the participants. Contact information to simulated ancillary departments, such as Inpatient STAT Lab, Blood Bank and Radiology, was distributed. We also collaborated with Hospital Informatics to create a virtual medical record for the simulated patient, which allowed the participants to view the ECMO order set, lab values, imaging results, vital signs, etc. The participants could also place orders in real time and document in the "patient's" medical record. The primary learning objective of the simulation was to improve competency in the daily management of an ECMO patient with less emphasis on ECMO circuit troubleshooting and emergency management. Scenarios included routine ECMO practices, such as conducting multidisciplinary ECMO rounds, adhering to programmatic processes, completing hourly patient assessments and documentation requirements, and monitoring patient fluid volume status. Results: 27 participants took pre-and post-course tests to assess their ECMO knowledge. They also filled out pre-and post-course selfassessments to determine their level of self-confidence in caring for an ECMO patient. One participant was excluded from the data analysis due to incomplete test scores and survey responses. Using the Wilcoxon Signed-rank test, we found a statistically significant improvement in the self-assessment scores (p=0.00001284). There was also a trend towards improvement in the knowledge scores (p=0.09). Conclusions: High fidelity in-situ simulation targeting various learner groups is effective with improvement in self-confidence and written knowledge. Recurring simulation opportunities in a new, low volume ECMO Center promotes continued familiarity and experience in caring for ECMO patients. Next steps include conducting multiple simulation sessions throughout a longer time span, such as over a 12 to 24 hour period
EMBASE:624562111
ISSN: 1538-943x
CID: 3430602

Subcutaneous Fat Necrosis and Hypercalcemia After Therapeutic Hypothermia in Patients With Hypoxic-ischemic Encephalopathy: A Case Series

Verma, Sourabh; Bailey, Sean M; Mally, Pradeep V; Wachtel, Elena V
Therapeutic hypothermia (TH) is provided to newborns with moderate to severe hypoxic-ischemic encephalopathy (HIE) to improve survival and long-term neurodevelopmental outcomes. Although the benefits certainly outweigh the risks associated with therapeutic hypothermia, it is important to be mindful of potential rare side effects in the background of asphyxia-related injury to various body organs. One of those side effects includes subcutaneous fat necrosis (SCFN) that can occur in term newborns after perinatal hypoxia-ischemia or other stressing factors such as systemic hypothermia. It is usually a self-limited condition, however, in some cases, it can lead to severe hypercalcemia. We report three such cases of SCFN in newborns with HIE treated with TH. Due to potential long-term complications, such as metastatic calcifications, caregivers should be informed about this potential complication prior to discharge from hospital so that they can help diagnose or continue to monitor cases of severe hypercalcemia.
PMID: 30280069
ISSN: 2168-8184
CID: 3328972