Try a new search

Format these results:

Searched for:

person:wangj28

in-biosketch:true

Total Results:

80


Relation between preoperative benzodiazepines and opioids on outcomes after total joint arthroplasty

Doan, Lisa V; Padjen, Kristoffer; Ok, Deborah; Gover, Adam; Rashid, Jawad; Osmani, Bijan; Avraham, Shirley; Wang, Jing; Kendale, Samir
To examine the association of preoperative opioids and/or benzodiazepines on postoperative outcomes in total knee and hip arthroplasty, we retrospectively compared postoperative outcomes in those prescribed preoperative opioids and/or benzodiazepines versus those who were not who underwent elective total knee and hip arthroplasty at a single urban academic institution. Multivariable logistic regression was performed for readmission rate, respiratory failure, infection, and adverse cardiac events. Multivariable zero-truncated negative binomial regression was used for length of stay. After exclusions, there were 4307 adult patients in the study population, 2009 of whom underwent total knee arthroplasty and 2298 of whom underwent total hip arthroplasty. After adjusting for potential confounders, preoperative benzodiazepine use was associated with increased odds of readmission (p < 0.01). Preoperative benzodiazepines were not associated with increased odds of respiratory failure nor increased length of stay. Preoperative opioids were not associated with increased odds of the examined outcomes. There were insufficient numbers of infection and cardiac events for analysis. In this study population, preoperative benzodiazepines were associated with increased odds of readmission. Preoperative opioids were not associated with increased odds of the examined outcomes. Studies are needed to further examine risks associated with preoperative benzodiazepine use.
PMCID:8131602
PMID: 34006976
ISSN: 2045-2322
CID: 4877142

Predictive coding models for pain perception

Song, Yuru; Yao, Mingchen; Kemprecos, Helen; Byrne, Aine; Xiao, Zhengdong; Zhang, Qiaosheng; Singh, Amrita; Wang, Jing; Chen, Zhe S
Pain is a complex, multidimensional experience that involves dynamic interactions between sensory-discriminative and affective-emotional processes. Pain experiences have a high degree of variability depending on their context and prior anticipation. Viewing pain perception as a perceptual inference problem, we propose a predictive coding paradigm to characterize evoked and non-evoked pain. We record the local field potentials (LFPs) from the primary somatosensory cortex (S1) and the anterior cingulate cortex (ACC) of freely behaving rats-two regions known to encode the sensory-discriminative and affective-emotional aspects of pain, respectively. We further use predictive coding to investigate the temporal coordination of oscillatory activity between the S1 and ACC. Specifically, we develop a phenomenological predictive coding model to describe the macroscopic dynamics of bottom-up and top-down activity. Supported by recent experimental data, we also develop a biophysical neural mass model to describe the mesoscopic neural dynamics in the S1 and ACC populations, in both naive and chronic pain-treated animals. Our proposed predictive coding models not only replicate important experimental findings, but also provide new prediction about the impact of the model parameters on the physiological or behavioral read-out-thereby yielding mechanistic insight into the uncertainty of expectation, placebo or nocebo effect, and chronic pain.
PMID: 33595765
ISSN: 1573-6873
CID: 4781012

AMPAkines potentiate the corticostriatal pathway to reduce acute and chronic pain

Zeng, Fei; Zhang, Qiaosheng; Liu, Yaling; Sun, Guanghao; Li, Anna; Talay, Robert S; Wang, Jing
The corticostriatal circuit plays an important role in the regulation of reward- and aversion-types of behaviors. Specifically, the projection from the prelimbic cortex (PL) to the nucleus accumbens (NAc) has been shown to regulate sensory and affective aspects of pain in a number of rodent models. Previous studies have shown that enhancement of glutamate signaling through the NAc by AMPAkines, a class of agents that specifically potentiate the function of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors, reduces acute and persistent pain. However, it is not known whether postsynaptic potentiation of the NAc with these agents can achieve the full anti-nociceptive effects of PL activation. Here we compared the impact of AMPAkine treatment in the NAc with optogenetic activation of the PL on pain behaviors in rats. We found that not only does AMPAkine treatment partially reconstitute the PL inhibition of sensory withdrawals, it fully occludes the effect of the PL on reducing the aversive component of pain. These results indicate that the NAc is likely one of the key targets for the PL, especially in the regulation of pain aversion. Furthermore, our results lend support for neuromodulation or pharmacological activation of the corticostriatal circuit as an important analgesic approach.
PMCID:7923831
PMID: 33653395
ISSN: 1756-6606
CID: 4808122

Automated digital TIL analysis (ADTA) adds prognostic value to standard assessment of depth and ulceration in primary melanoma

Moore, Michael R; Friesner, Isabel D; Rizk, Emanuelle M; Fullerton, Benjamin T; Mondal, Manas; Trager, Megan H; Mendelson, Karen; Chikeka, Ijeuru; Kurc, Tahsin; Gupta, Rajarsi; Rohr, Bethany R; Robinson, Eric J; Acs, Balazs; Chang, Rui; Kluger, Harriet; Taback, Bret; Geskin, Larisa J; Horst, Basil; Gardner, Kevin; Niedt, George; Celebi, Julide T; Gartrell-Corrado, Robyn D; Messina, Jane; Ferringer, Tammie; Rimm, David L; Saltz, Joel; Wang, Jing; Vanguri, Rami; Saenger, Yvonne M
Accurate prognostic biomarkers in early-stage melanoma are urgently needed to stratify patients for clinical trials of adjuvant therapy. We applied a previously developed open source deep learning algorithm to detect tumor-infiltrating lymphocytes (TILs) in hematoxylin and eosin (H&E) images of early-stage melanomas. We tested whether automated digital (TIL) analysis (ADTA) improved accuracy of prediction of disease specific survival (DSS) based on current pathology standards. ADTA was applied to a training cohort (n = 80) and a cutoff value was defined based on a Receiver Operating Curve. ADTA was then applied to a validation cohort (n = 145) and the previously determined cutoff value was used to stratify high and low risk patients, as demonstrated by Kaplan-Meier analysis (p ≤ 0.001). Multivariable Cox proportional hazards analysis was performed using ADTA, depth, and ulceration as co-variables and showed that ADTA contributed to DSS prediction (HR: 4.18, CI 1.51-11.58, p = 0.006). ADTA provides an effective and attainable assessment of TILs and should be further evaluated in larger studies for inclusion in staging algorithms.
PMCID:7854647
PMID: 33531581
ISSN: 2045-2322
CID: 4789702

Pharmacological restoration of anti-nociceptive functions in the prefrontal cortex relieves chronic pain

Talay, Robert S; Liu, Yaling; Michael, Matthew; Li, Anna; Friesner, Isabel D; Zeng, Fei; Sun, Guanghao; Chen, Zhe Sage; Zhang, Qiaosheng; Wang, Jing
Chronic pain affects one in four adults, and effective non-sedating and non-addictive treatments are urgently needed. Chronic pain causes maladaptive changes in the cerebral cortex, which can lead to impaired endogenous nociceptive processing. However, it is not yet clear if drugs that restore endogenous cortical regulation could provide an effective therapeutic strategy for chronic pain. Here, we studied the nociceptive response of neurons in the prelimbic region of the prefrontal cortex (PL-PFC) in freely behaving rats using a spared nerve injury (SNI) model of chronic pain, and the impact of AMPAkines, a class of drugs that increase central glutamate signaling, on such response. We found that neurons in the PL-PFC increase their firing rates in response to noxious stimulations; chronic neuropathic pain, however, suppressed this important cortical pain response. Meanwhile, CX546, a well-known AMPAkine, restored the anti-nociceptive response of PL-PFC neurons in the chronic pain condition. In addition, both systemic administration and direct delivery of CX546 into the PL-PFC inhibited symptoms of chronic pain, whereas optogenetic inactivation of the PFC neurons or administration of AMPA receptor antagonists in the PL-PFC blocked the anti-nociceptive effects of CX546. These results indicate that restoration of the endogenous anti-nociceptive functions in the PL-PFC by pharmacological agents such as AMPAkines constitutes a successful strategy to treat chronic neuropathic pain.
PMID: 33545233
ISSN: 1873-5118
CID: 4807472

Frequency Dependent Electrical Stimulation of PFC and ACC for Acute Pain Treatment in Rats

Liu, Yaling; Xu, Helen; Sun, Guanghao; Vemulapalli, Bharat; Jee, Hyun Jung; Zhang, Qiaosheng; Wang, Jing
As pain consists of both sensory and affective components, its management by pharmaceutical agents remains difficult. Alternative forms of neuromodulation, such as electrical stimulation, have been studied in recent years as potential pain treatment options. Although electrical stimulation of the brain has shown promise, more research into stimulation frequency and targets is required to support its clinical applications. Here, we studied the effect that stimulation frequency has on pain modulation in the prefrontal cortex (PFC) and the anterior cingulate cortex (ACC) in acute pain models in rats. We found that low-frequency stimulation in the prelimbic region of the PFC (PL-PFC) provides reduction of sensory and affective pain components. Meanwhile, high-frequency stimulation of the ACC, a region involved in processing pain affect, reduces pain aversive behaviors. Our results demonstrate that frequency-dependent neuromodulation of the PFC or ACC has the potential for pain modulation.
PMCID:8915567
PMID: 35295497
ISSN: 2673-561x
CID: 5220752

Ketamine normalizes high-gamma power in the anterior cingulate cortex in a rat chronic pain model

Friesner, Isabel D; Martinez, Erik; Zhou, Haocheng; Gould, Jonathan Douglas; Li, Anna; Chen, Zhe Sage; Zhang, Qiaosheng; Wang, Jing
Chronic pain alters cortical and subcortical plasticity, causing enhanced sensory and affective responses to peripheral nociceptive inputs. Previous studies have shown that ketamine had the potential to inhibit abnormally amplified affective responses of single neurons by suppressing hyperactivity in the anterior cingulate cortex (ACC). However, the mechanism of this enduring effect has yet to be understood at the network level. In this study, we recorded local field potentials from the ACC of freely moving rats. Animals were injected with complete Freund's adjuvant (CFA) to induce persistent inflammatory pain. Mechanical stimulations were administered to the hind paw before and after CFA administration. We found a significant increase in the high-gamma band (60-100 Hz) power in response to evoked pain after CFA treatment. Ketamine, however, reduced the high-gamma band power in response to evoked pain in CFA-treated rats. In addition, ketamine had a sustained effect on the high-gamma band power lasting up to five days after a single dose administration. These results demonstrate that ketamine has the potential to alter maladaptive neural responses in the ACC induced by chronic pain.
PMCID:7513294
PMID: 32967695
ISSN: 1756-6606
CID: 4617632

Discovery and validation of biomarkers to aid the development of safe and effective pain therapeutics: challenges and opportunities

Davis, Karen D; Aghaeepour, Nima; Ahn, Andrew H; Angst, Martin S; Borsook, David; Brenton, Ashley; Burczynski, Michael E; Crean, Christopher; Edwards, Robert; Gaudilliere, Brice; Hergenroeder, Georgene W; Iadarola, Michael J; Iyengar, Smriti; Jiang, Yunyun; Kong, Jiang-Ti; Mackey, Sean; Saab, Carl Y; Sang, Christine N; Scholz, Joachim; Segerdahl, Marta; Tracey, Irene; Veasley, Christin; Wang, Jing; Wager, Tor D; Wasan, Ajay D; Pelleymounter, Mary Ann
Pain medication plays an important role in the treatment of acute and chronic pain conditions, but some drugs, opioids in particular, have been overprescribed or prescribed without adequate safeguards, leading to an alarming rise in medication-related overdose deaths. The NIH Helping to End Addiction Long-term (HEAL) Initiative is a trans-agency effort to provide scientific solutions to stem the opioid crisis. One component of the initiative is to support biomarker discovery and rigorous validation in collaboration with industry leaders to accelerate high-quality clinical research into neurotherapeutics and pain. The use of objective biomarkers and clinical trial end points throughout the drug discovery and development process is crucial to help define pathophysiological subsets of pain, evaluate target engagement of new drugs and predict the analgesic efficacy of new drugs. In 2018, the NIH-led Discovery and Validation of Biomarkers to Develop Non-Addictive Therapeutics for Pain workshop convened scientific leaders from academia, industry, government and patient advocacy groups to discuss progress, challenges, gaps and ideas to facilitate the development of biomarkers and end points for pain. The outcomes of this workshop are outlined in this Consensus Statement.
PMID: 32541893
ISSN: 1759-4766
CID: 4496692

Mapping Cortical Integration of Sensory and Affective Pain Pathways

Singh, Amrita; Patel, Divya; Li, Anna; Hu, Lizbeth; Zhang, Qiaosheng; Liu, Yaling; Guo, Xinling; Robinson, Eric; Martinez, Erik; Doan, Lisa; Rudy, Bernardo; Chen, Zhe S; Wang, Jing
Pain is an integrated sensory and affective experience. Cortical mechanisms of sensory and affective integration, however, remain poorly defined. Here, we investigate the projection from the primary somatosensory cortex (S1), which encodes the sensory pain information, to the anterior cingulate cortex (ACC), a key area for processing pain affect, in freely behaving rats. By using a combination of optogenetics, in vivo electrophysiology, and machine learning analysis, we find that a subset of neurons in the ACC receives S1 inputs, and activation of the S1 axon terminals increases the response to noxious stimuli in ACC neurons. Chronic pain enhances this cortico-cortical connection, as manifested by an increased number of ACC neurons that respond to S1 inputs and the magnified contribution of these neurons to the nociceptive response in the ACC. Furthermore, modulation of this S1→ACC projection regulates aversive responses to pain. Our results thus define a cortical circuit that plays a potentially important role in integrating sensory and affective pain signals.
PMID: 32220320
ISSN: 1879-0445
CID: 4368562

Interpretation of mitochondrial tRNA variants

Wong, Lee-Jun C; Chen, Ting; Wang, Jing; Tang, Sha; Schmitt, Eric S; Landsverk, Megan; Li, Fangyuan; Wang, Yue; Zhang, Shulin; Zhang, Victor Wei; Craigen, William J
PURPOSE:To develop criteria to interpret mitochondrial transfer RNA (mt-tRNA) variants based on unique characteristics of mitochondrial genetics and conserved structural/functional properties of tRNA. METHODS:We developed rules on a set of established pathogenic/benign variants by examining heteroplasmy correlations with phenotype, tissue distribution, family members, and among unrelated families from published literature. We validated these deduced rules using our new cases and applied them to classify novel variants. RESULTS:Evaluation of previously reported pathogenic variants found that 80.6% had sufficient evidence to support phenotypic correlation with heteroplasmy levels among and within families. The remaining variants were downgraded due to the lack of similar evidence. Application of the verified criteria resulted in rescoring 80.8% of reported variants of uncertain significance (VUS) to benign and likely benign. Among 97 novel variants, none met pathogenic criteria. A large proportion of novel variants (84.5%) remained as VUS, while only 10.3% were likely pathogenic. Detection of these novel variants in additional individuals would facilitate their classification. CONCLUSION:Proper interpretation of mt-tRNA variants is crucial for accurate clinical diagnosis and genetic counseling. Correlations with tissue distribution, heteroplasmy levels, predicted perturbations to tRNA structure, and phenotypes provide important evidence for determining the clinical significance of mt-tRNA variants.
PMID: 31965079
ISSN: 1530-0366
CID: 4967672