Try a new search

Format these results:

Searched for:



Total Results:


Portable Air Cleaners and Home Systolic Blood Pressure in Adults With Hypertension Living in New York City Public Housing [Letter]

Wittkopp, Sharine; Anastasiou, Elle; Hu, Jiyuan; Liu, Mengling; Langford, Aisha T; Brook, Robert D; Gordon, Terry; Thorpe, Lorna E; Newman, Jonathan D
PMID: 37382099
ISSN: 2047-9980
CID: 5537272

Portable air cleaner use and biomarkers of inflammation: A systematic review and meta-analysis

Wittkopp, Sharine; Walzer, Dalia; Thorpe, Lorna; Roberts, Timothy; Xia, Yuhe; Gordon, Terry; Thurston, George; Brook, Robert; Newman, Jonathan D.
Fine particulate matter air pollution (PM2.5) is a major contributor to cardiovascular morbidity and mortality, potentially via increased inflammation. PM2.5 exposure increases inflammatory biomarkers linked to cardiovascular disease, including CRP, IL-6 and TNFα. Portable air cleaners (PACs) reduce individual PM2.5 exposure but evidence is limited regarding whether PACs also reduce inflammatory biomarkers. We performed a systematic review and meta-analysis of trials evaluating the use of PACs to reduce PM2.5 exposure and inflammatory biomarker concentrations. We identified English-language articles of randomized sham-controlled trials evaluating high efficiency particulate air filters in non-smoking, residential settings measuring serum CRP, IL-6 and TNFα before and after active versus sham filtration, and performed meta-analysis on the extracted modeled percent change in biomarker concentration across studies. Of 487 articles identified, we analyzed 14 studies enrolling 778 participants that met inclusion criteria. These studies showed PACs reduced PM2.5 by 61.5 % on average. Of the 14 included studies, 10 reported CRP concentrations in 570 participants; these showed active PAC use was associated with 7 % lower CRP (95 % CI: −14 % to 0.0 %, p = 0.05). Nine studies of IL-6, with 379 participants, showed active PAC use was associated with 13 % lower IL-6 (95 % CI: [−23 %, −3 %], p = 0.009). Six studies, with 269 participants, reported TNF-α and demonstrated no statistical evidence of difference between active and sham PAC use. Portable air cleaners that reduce PM2.5 exposure can decrease concentrations of inflammatory biomarkers associated with cardiovascular disease. Additional studies are needed to evaluate clinical outcomes and other biomarkers.
ISSN: 2666-6022
CID: 5499742

Vascular endothelium as a target for perfluroalkyl substances (PFAs)

Wittkopp, Sharine; Wu, Fen; Windheim, Joseph; Robinson, Morgan; Kannan, Kurunthachalam; Katz, Stuart D; Chen, Yu; Newman, Jonathan D; [Levy, Natalie]
INTRODUCTION/BACKGROUND:Perfluoroalkyl substances (PFAs) are ubiquitous, anthropogenic organic compounds that have been linked with cardiovascular disease and cardiovascular risk factors. Older, long-chain PFAs have been phased out due to adverse cardiometabolic health effect and replaced by newer short-chain PFAs. However, emerging research suggests that short-chain PFAs may also have adverse cardiovascular effects. Non-invasive measures of vascular function can detect preclinical cardiovascular disease and serve as a useful surrogate for early CVD risk. We hypothesized that serum concentrations of PFAs would be associated with noninvasive measures of vascular function, carotid-femoral pulse wave velocity (PWV) and brachial artery reactivity testing (BART), in adults with non-occupational exposure to PFAs. METHODS:We measured serum concentrations of 14 PFAs with hybrid solid-phase extraction and ultrahigh-performance liquid chromatography-tandem mass spectrometry in 94 adult outpatients with no known cardiovascular disease. We collected clinical and demographic data; and measured vascular function, PWV and BART, using standard protocols. We assessed associations of individual PFAs with log-transformed BART and PWV using linear regression. We used weighted quantile sum regression to assess effects of correlated PFA mixtures on BART and PWV. RESULTS:Ten PFAs were measured above the limit of detection in >50% of participants. Each standard deviation increase in concentration of perfluoroheptanoic acid (PFHpA) was associated with 15% decrease in BART (95% CI: -28.5, -0.17). The weighted index of a mixture of PFAs with correlated concentrations was inversely associated with BART: each tertile increase in the weighted PFA mixture was associated with 25% lower BART, with 73% of the effect driven by PFHpA. In contrast, no PFAs or mixtures were associated with PWV. CONCLUSIONS:Serum concentration of PFHpA, a new, short-chain PFA, was associated with impaired vascular function among outpatients without CVD. Our findings support a potential adverse cardiovascular effect of newer, short-chain PFAs.
PMID: 35447152
ISSN: 1096-0953
CID: 5428772

Diffuse optical spectroscopic imaging of subcutaneous adipose tissue metabolic changes during weight loss

Ganesan, G; Warren, R V; Leproux, A; Compton, M; Cutler, K; Wittkopp, S; Tran, G; O'Sullivan, T; Malik, S; Galassetti, P R; Tromberg, B J
BACKGROUND:Changes in subcutaneous adipose tissue (AT) structure and metabolism have been shown to correlate with the development of obesity and related metabolic disorders. Measurements of AT physiology could provide new insight into metabolic disease progression and response to therapy. An emerging functional imaging technology, diffuse optical spectroscopic imaging (DOSI), was used to obtain quantitative measures of near infrared (NIR) AT optical and physiological properties. METHODS:Ten overweight or obese adults were assessed during 3 months on calorie-restricted diets. DOSI-derived tissue concentrations of hemoglobin, water and lipid and the wavelength-dependent scattering amplitude (A) and slope (b) obtained from 30 abdominal locations and three time points (T0, T6, T12) were calculated and analyzed using linear mixed-effects models and were also used to form 3D surface images. RESULTS:Subjects lost a mean of 11.7±3.4% of starting weight, while significant changes in A (+0.23±0.04 mm(-1), adj. P<0.001),b (-0.17±0.04, adj. P<0.001), tissue water fraction (+7.2±1.1%, adj. P<0.001) and deoxyhemoglobin (1.1±0.3 μM, adj. P<0.001) were observed using mixed-effect model analysis. DISCUSSION:Optical scattering signals reveal alterations in tissue structure that possibly correlate with reductions in adipose cell volume, while water and hemoglobin dynamics suggest improved AT perfusion and oxygen extraction. These results suggest that DOSI measurements of NIR optical and physiological properties could be used to enhance understanding of the role of AT in metabolic disorders and provide new strategies for diagnostic monitoring of obesity and weight loss.
PMID: 27089996
ISSN: 1476-5497
CID: 5606342

Nrf2-related gene expression and exposure to traffic-related air pollution in elderly subjects with cardiovascular disease: An exploratory panel study

Wittkopp, Sharine; Staimer, Norbert; Tjoa, Thomas; Stinchcombe, Timothy; Daher, Nancy; Schauer, James J; Shafer, Martin M; Sioutas, Constantinos; Gillen, Daniel L; Delfino, Ralph J
Gene expression changes are linked to air pollutant exposures in in vitro and animal experiments. However, limited data are available on how these outcomes relate to ambient air pollutant exposures in humans. We performed an exploratory analysis testing whether gene expression levels were associated with air pollution exposures in a Los Angeles area cohort of elderly subjects with coronary artery disease. Candidate genes (35) were selected from published studies of gene expression-pollutant associations. Expression levels were measured weekly in 43 subjects (≤ 12 weeks) using quantitative PCR. Exposures included gaseous pollutants O3, nitrogen oxides (NOx), and CO; particulate matter (PM) pollutants elemental and black carbon (EC, BC); and size-fractionated PM mass. We measured organic compounds from PM filter extracts, including polycyclic aromatic hydrocarbons (PAHs), and determined the in vitro oxidative potential of particle extracts. Associations between exposures and gene expression levels were analyzed using mixed-effects regression models. We found positive associations of traffic-related pollutants (EC, BC, primary organic carbon, PM 0.25-2.5 PAH and/or PM 0.25 PAH, and NOx) with NFE2L2, Nrf2-mediated genes (HMOX1, NQO1, and SOD2), CYP1B1, IL1B, and SELP. Findings suggest that NFE2L2 gene expression links associations of traffic-related air pollution with phase I and II enzyme genes at the promoter transcription level.
PMID: 25564368
ISSN: 1559-064x
CID: 4952322

Mitochondrial genetic background modifies the relationship between traffic-related air pollution exposure and systemic biomarkers of inflammation

Wittkopp, Sharine; Staimer, Norbert; Tjoa, Thomas; Gillen, Daniel; Daher, Nancy; Shafer, Martin; Schauer, James J; Sioutas, Constantinos; Delfino, Ralph J
BACKGROUND:Mitochondria are the main source of reactive oxygen species (ROS). Human mitochondrial haplogroups are linked to differences in ROS production and oxidative-stress induced inflammation that may influence disease pathogenesis, including coronary artery disease (CAD). We previously showed that traffic-related air pollutants were associated with biomarkers of systemic inflammation in a cohort panel of subjects with CAD in the Los Angeles air basin. OBJECTIVE:We tested whether air pollutant exposure-associated inflammation was stronger in mitochondrial haplogroup H than U (high versus low ROS production) in this panel (38 subjects and 417 observations). METHODS:Inflammation biomarkers were measured weekly in each subject (≤ 12 weeks), including interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), C-reactive protein, interleukin-6 soluble receptor and tumor necrosis factor-soluble receptor II. We determined haplogroup by restriction fragment length polymorphism analysis. Air pollutants included nitrogen oxides (NOx), carbon monoxide (CO), organic carbon, elemental and black carbon (EC, BC); and particulate matter mass, three size fractions (<0.25 µm, 0.25-2.5 µm, and 2.5-10 µm in aerodynamic diameter). Particulate matter extracts were analyzed for organic compounds, including polycyclic aromatic hydrocarbons (PAH), and in vitro oxidative potential of aqueous extracts. Associations between exposures and biomarkers, stratified by haplogroup, were analyzed by mixed-effects models. RESULTS:IL-6 and TNF-α were associated with traffic-related air pollutants (BC, CO, NOx and PAH), and with mass and oxidative potential of quasi-ultrafine particles <0.25 µm. These associations were stronger for haplogroup H than haplogroup U. CONCLUSIONS:Results suggest that mitochondrial haplogroup U is a novel protective factor for air pollution-related systemic inflammation in this small group of subjects.
PMID: 23717615
ISSN: 1932-6203
CID: 4952312

Ancient mtDNA genetic variants modulate mtDNA transcription and replication

Suissa, Sarit; Wang, Zhibo; Poole, Jason; Wittkopp, Sharine; Feder, Jeanette; Shutt, Timothy E; Wallace, Douglas C; Shadel, Gerald S; Mishmar, Dan
Although the functional consequences of mitochondrial DNA (mtDNA) genetic backgrounds (haplotypes, haplogroups) have been demonstrated by both disease association studies and cell culture experiments, it is not clear which of the mutations within the haplogroup carry functional implications and which are "evolutionary silent hitchhikers". We set forth to study the functionality of haplogroup-defining mutations within the mtDNA transcription/replication regulatory region by in vitro transcription, hypothesizing that haplogroup-defining mutations occurring within regulatory motifs of mtDNA could affect these processes. We thus screened >2500 complete human mtDNAs representing all major populations worldwide for natural variation in experimentally established protein binding sites and regulatory regions comprising a total of 241 bp in each mtDNA. Our screen revealed 77/241 sites showing point mutations that could be divided into non-fixed (57/77, 74%) and haplogroup/sub-haplogroup-defining changes (i.e., population fixed changes, 20/77, 26%). The variant defining Caucasian haplogroup J (C295T) increased the binding of TFAM (Electro Mobility Shift Assay) and the capacity of in vitro L-strand transcription, especially of a shorter transcript that maps immediately upstream of conserved sequence block 1 (CSB1), a region associated with RNA priming of mtDNA replication. Consistent with this finding, cybrids (i.e., cells sharing the same nuclear genetic background but differing in their mtDNA backgrounds) harboring haplogroup J mtDNA had a >2 fold increase in mtDNA copy number, as compared to cybrids containing haplogroup H, with no apparent differences in steady state levels of mtDNA-encoded transcripts. Hence, a haplogroup J regulatory region mutation affects mtDNA replication or stability, which may partially account for the phenotypic impact of this haplogroup. Our analysis thus demonstrates, for the first time, the functional impact of particular mtDNA haplogroup-defining control region mutations, paving the path towards assessing the functionality of both fixed and un-fixed genetic variants in the mitochondrial genome.
PMID: 19424428
ISSN: 1553-7404
CID: 4952302

Structure-activity relationships at monoamine transporters and muscarinic receptors for N-substituted-3alpha-(3'-chloro-, 4'-chloro-, and 4',4''-dichloro-substituted-diphenyl)methoxytropanes

Newman, A H; Robarge, M J; Howard, I M; Wittkopp, S L; George, C; Kopajtic, T; Izenwasser, S; Katz, J L
The design, synthesis, and evaluation of 3alpha-(diphenylmethoxy)tropane (benztropine) analogues have provided potent and selective probes for the dopamine transporter. Structure-activity relationships (SARs) have been developed that contrast with those described for cocaine, despite significant structural similarity. Furthermore, behavioral evaluation of many of the benztropine analogues in animal models of cocaine abuse has suggested that these two classes of tropane-based dopamine uptake inhibitors have distinct pharmacological profiles. In general, the benztropine analogues do not demonstrate efficacious locomotor stimulation in mice, do not fully substitute for a cocaine discriminative stimulus, and are not appreciably self-administered in rhesus monkeys. These compounds are generally more potent than cocaine as dopamine uptake inhibitors in vitro, although their actions in vivo are not consistent with this action. These observations suggest that differing binding profiles at the serotonin and norepinephrine transporters as well as at muscarinic receptors might have significant impact on the pharmacological actions of these compounds. In addition, by varying the structures of the parent compounds and thereby modifying their physical properties, pharmacokinetics as well as pharmacodynamics will be directly affected. Therefore, in an attempt to systematically evaluate the impact of chemical modification on these actions, a series of N-substituted (H, CH3, allyl, benzyl, propylphenyl, and butylphenyl) analogues of 3'-chloro-, 4'-chloro-, and 4,4''-dichloro-3alpha-(diphenylmethoxy)tropanes were synthesized. These compounds were evaluated for displacement, in rat tissue, of [3H]WIN 35,428 from the dopamine transporter, [3H]citalopram from the serotonin transporter, [3H]nisoxetine from the norepinephrine transporter, and [3H]pirenzepine from muscarinic m1 receptors. SARs were developed and compared to a series of N-substituted-3alpha-(bis-4'-fluorophenyl)methoxytropanes. The present SARs followed previously reported studies with the single exception of the N-butylphenyl substituent, which did not provide the high affinity binding in any of these three sets of analogues, as it did in the 4',4''-difluoro series. X-ray crystallographic analyses of the three parent ligands (1a, 2a, and 3a) were compared to that of 3alpha-(bis-4'-fluorophenyl)methoxytropane which provided supportive evidence toward the proposal that the combination of steric bulk in both the 3-position and the N-substituent, in this class of compounds, is not optimal for binding at the dopamine transporter. These studies provide binding profile data that can now be used to correlate with future behavioral analyses of these compounds and may provide insight into the kind of binding profile that might be targeted as a potential treatment for cocaine abuse.
PMID: 11170654
ISSN: 0022-2623
CID: 5606302