Try a new search

Format these results:

Searched for:

person:wub02

in-biosketch:true

Total Results:

52


Longitudinal Lower Airway Microbial Signatures of Acute Cellular Rejection in Lung Transplantation

Natalini, Jake G; Wong, Kendrew K; Nelson, Nathaniel C; Wu, Benjamin G; Rudym, Darya; Lesko, Melissa B; Qayum, Seema; Lewis, Tyler C; Wong, Adrian; Chang, Stephanie H; Chan, Justin C Y; Geraci, Travis C; Li, Yonghua; Wang, Chan; Li, Huilin; Pamar, Prerna; Schnier, Joseph; Mahoney, Ian J; Malik, Tahir; Darawshy, Fares; Sulaiman, Imran; Kugler, Matthias C; Singh, Rajbir; Collazo, Destiny E; Chang, Miao; Patel, Shrey; Kyeremateng, Yaa; McCormick, Colin; Barnett, Clea R; Tsay, Jun-Chieh J; Brosnahan, Shari B; Singh, Shivani; Pass, Harvey I; Angel, Luis F; Segal, Leopoldo N
PMID: 38358857
ISSN: 1535-4970
CID: 5633542

Lower Airway Dysbiosis Augments Lung Inflammatory Injury in Mild-to-Moderate Chronic Obstructive Pulmonary Disease

Sulaiman, Imran; Wu, Benjamin G; Chung, Matthew; Isaacs, Bradley; Tsay, Jun-Chieh J; Holub, Meredith; Barnett, Clea R; Kwok, Benjamin; Kugler, Matthias C; Natalini, Jake G; Singh, Shivani; Li, Yonghua; Schluger, Rosemary; Carpenito, Joseph; Collazo, Destiny; Perez, Luisanny; Kyeremateng, Yaa; Chang, Miao; Campbell, Christina D; Hansbro, Philip M; Oppenheimer, Beno W; Berger, Kenneth I; Goldring, Roberta M; Koralov, Sergei B; Weiden, Michael D; Xiao, Rui; D'Armiento, Jeanine; Clemente, Jose C; Ghedin, Elodie; Segal, Leopoldo N
PMID: 37677136
ISSN: 1535-4970
CID: 5606572

Microbial Inflammatory Networks in Bronchiectasis Exacerbators With Pseudomonas aeruginosa

Gramegna, Andrea; Narayana, Jayanth Kumar; Amati, Francesco; Stainer, Anna; Wu, Benjamin; Morlacchi, Letizia Corinna; Segal, Leopoldo N; Tsaneva-Atanasova, Krasimira; Marchisio, Paola; Chotirmall, Sanjay H; Blasi, Francesco; Aliberti, Stefano
PMID: 36803648
ISSN: 1931-3543
CID: 5433742

More than Mycobacterium tuberculosis: site-of-disease microbial communities, and their functional and clinical profiles in tuberculous lymphadenitis

Nyawo, Georgina R; Naidoo, Charissa C; Wu, Benjamin; Sulaiman, Imran; Clemente, Jose C; Li, Yonghua; Minnies, Stephanie; Reeve, Byron W P; Moodley, Suventha; Rautenbach, Cornelia; Wright, Colleen; Singh, Shivani; Whitelaw, Andrew; Schubert, Pawel; Warren, Robin; Segal, Leopoldo; Theron, Grant
BACKGROUND:Lymphadenitis is the most common extrapulmonary tuberculosis (EPTB) manifestation. The microbiome is important to human health but uninvestigated in EPTB. We profiled the site-of-disease lymph node microbiome in tuberculosis lymphadenitis (TBL). METHODS:Fine-needle aspiration biopsies were collected from 158 pretreatment presumptive TBL patients in Cape Town, South Africa. 16S Illumina MiSeq rRNA gene sequencing was done. RESULTS:complex. CONCLUSIONS:-dominated dTBL lymphotypes, which contain taxa potentially targeted by TB treatment, were associated with milder, potentially earlier stage disease. These investigations lay foundations for studying the microbiome's role in lymphatic TB. The long-term clinical significance of these lymphotypes requires prospective validation.
PMCID:9957952
PMID: 36598079
ISSN: 1468-3296
CID: 5441292

Pleural fluid microbiota as a biomarker for malignancy and prognosis

Kwok, Benjamin; Wu, Benjamin G; Kocak, Ibrahim F; Sulaiman, Imran; Schluger, Rosemary; Li, Yonghua; Anwer, Raheel; Goparaju, Chandra; Ryan, Daniel J; Sagatelian, Marla; Dreier, Matthew S; Murthy, Vivek; Rafeq, Samaan; Michaud, Gaetane C; Sterman, Daniel H; Bessich, Jamie L; Pass, Harvey I; Segal, Leopoldo N; Tsay, Jun-Chieh J
Malignant pleural effusions (MPE) complicate malignancies and portend worse outcomes. MPE is comprised of various components, including immune cells, cancer cells, and cell-free DNA/RNA. There have been investigations into using these components to diagnose and prognosticate MPE. We hypothesize that the microbiome of MPE is unique and may be associated with diagnosis and prognosis. We compared the microbiota of MPE against microbiota of pleural effusions from non-malignant and paramalignant states. We collected a total of 165 pleural fluid samples from 165 subjects; Benign (n = 16), Paramalignant (n = 21), MPE-Lung (n = 57), MPE-Other (n = 22), and Mesothelioma (n = 49). We performed high throughput 16S rRNA gene sequencing on pleural fluid samples and controls. We showed that there are compositional differences among pleural effusions related to non-malignant, paramalignant, and malignant disease. Furthermore, we showed differential enrichment of bacterial taxa within MPE depending on the site of primary malignancy. Pleural fluid of MPE-Lung and Mesothelioma were associated with enrichment with oral and gut bacteria that are commonly thought to be commensals, including Rickettsiella, Ruminococcus, Enterococcus, and Lactobacillales. Mortality in MPE-Lung is associated with enrichment in Methylobacterium, Blattabacterium, and Deinococcus. These observations lay the groundwork for future studies that explore host-microbiome interactions and their influence on carcinogenesis.
PMCID:9908925
PMID: 36755121
ISSN: 2045-2322
CID: 5426932

Microbial Signatures in Malignant Pleural Effusions [Meeting Abstract]

Kwok, B.; Wu, B. G.; Kocak, I. F.; Anwer, R.; Li, Y.; Goparaju, C.; Schluger, R.; Murthy, V.; Rafeq, S.; Bessich, J. L.; Tsay, J. J.; Pass, H. I.; Segal, L. N.
ISI:000792480400056
ISSN: 1073-449x
CID: 5266102

Anti-Mycobacterials and Micro-Aspiration Drive Lower Airway Dysbiosis in NTM Bronchiectasis [Meeting Abstract]

Singh, S.; Hoque, A.; Sulaiman, I.; Li, Y.; Wu, B.; Chang, M.; Kyeremateng, Y.; Collazo, D. E.; Kamelhar, D.; Addrizzo-Harris, D. J.; Segal, L. N.
ISI:000792480401435
ISSN: 1073-449x
CID: 5238232

Chronic Lower Airway Dysbiosis with Human Oral Commensals Leads to Both Increased IL-17A and Immune Exhaustion Tone in the Lower Airways [Meeting Abstract]

Chang, M.; Kyeremateng, Y.; Collazo, D.; Kocak, I.; Singh, S.; Li, Y.; Tsay, J.; Segal, L. N.; Wu, B. G.
ISI:000792480401571
ISSN: 1073-449x
CID: 5238222

Microbial signatures in the lower airways of mechanically ventilated COVID-19 patients associated with poor clinical outcome

Sulaiman, Imran; Chung, Matthew; Angel, Luis; Tsay, Jun-Chieh J; Wu, Benjamin G; Yeung, Stephen T; Krolikowski, Kelsey; Li, Yonghua; Duerr, Ralf; Schluger, Rosemary; Thannickal, Sara A; Koide, Akiko; Rafeq, Samaan; Barnett, Clea; Postelnicu, Radu; Wang, Chang; Banakis, Stephanie; Pérez-Pérez, Lizzette; Shen, Guomiao; Jour, George; Meyn, Peter; Carpenito, Joseph; Liu, Xiuxiu; Ji, Kun; Collazo, Destiny; Labarbiera, Anthony; Amoroso, Nancy; Brosnahan, Shari; Mukherjee, Vikramjit; Kaufman, David; Bakker, Jan; Lubinsky, Anthony; Pradhan, Deepak; Sterman, Daniel H; Weiden, Michael; Heguy, Adriana; Evans, Laura; Uyeki, Timothy M; Clemente, Jose C; de Wit, Emmie; Schmidt, Ann Marie; Shopsin, Bo; Desvignes, Ludovic; Wang, Chan; Li, Huilin; Zhang, Bin; Forst, Christian V; Koide, Shohei; Stapleford, Kenneth A; Khanna, Kamal M; Ghedin, Elodie; Segal, Leopoldo N
Respiratory failure is associated with increased mortality in COVID-19 patients. There are no validated lower airway biomarkers to predict clinical outcome. We investigated whether bacterial respiratory infections were associated with poor clinical outcome of COVID-19 in a prospective, observational cohort of 589 critically ill adults, all of whom required mechanical ventilation. For a subset of 142 patients who underwent bronchoscopy, we quantified SARS-CoV-2 viral load, analysed the lower respiratory tract microbiome using metagenomics and metatranscriptomics and profiled the host immune response. Acquisition of a hospital-acquired respiratory pathogen was not associated with fatal outcome. Poor clinical outcome was associated with lower airway enrichment with an oral commensal (Mycoplasma salivarium). Increased SARS-CoV-2 abundance, low anti-SARS-CoV-2 antibody response and a distinct host transcriptome profile of the lower airways were most predictive of mortality. Our data provide evidence that secondary respiratory infections do not drive mortality in COVID-19 and clinical management strategies should prioritize reducing viral replication and maximizing host responses to SARS-CoV-2.
PMID: 34465900
ISSN: 2058-5276
CID: 4998422

Functional lower airways genomic profiling of the microbiome to capture active microbial metabolism

Sulaiman, Imran; Wu, Benjamin G; Li, Yonghua; Tsay, Jun-Chieh; Sauthoff, Maya; Scott, Adrienne S; Ji, Kun; Koralov, Sergei B; Weiden, Michael; Clemente, Jose; Jones, Drew; Huang, Yvonne J; Stringer, Kathleen A; Zhang, Lingdi; Geber, Adam; Banakis, Stephanie; Tipton, Laura; Ghedin, Elodie; Segal, Leopoldo N
RATIONALE/BACKGROUND:Microbiome studies of the lower airway based on bacterial 16S rRNA gene sequencing assess microbial community structure but can only infer functional characteristics. Microbial products, such as short chain fatty acids (SCFAs), in the lower airways have significant impact on the host's immune tone. Thus, functional approaches to the analyses of the microbiome are necessary. METHODS:Here we used upper and lower airway samples from a research bronchoscopy smoker cohort. In addition, we validated our results in an experimental mouse model. MEASUREMENTS/METHODS:We extended our microbiota characterisation beyond 16S rRNA gene sequencing with the use of whole genome (WGS) and RNA metatranscriptome sequencing. Short chain fatty acids (SCFA) were also measured in lower airway samples and correlated with each of the sequencing datasets. In the mouse model, 16S rRNA gene and RNA metatranscriptome sequencing were performed. MAIN RESULTS/RESULTS:Functional evaluations of the lower airway microbiota using inferred metagenome, WGS and metatranscriptome were dissimilar. Comparison with measured levels of SCFAs shows that the inferred metagenome from the 16S rRNA gene sequencing data was poorly correlated, while better correlations were noted when SCFAs levels were compared with WGS and metatranscriptome. Modelling lower airway aspiration with oral commensals in a mouse model showed that the metatranscriptome most efficiently captures transient active microbial metabolism, which was overestimated by 16S rRNA gene sequencing. CONCLUSIONS:Functional characterisation of the lower airway microbiota through metatranscriptome identify metabolically active organisms capable of producing metabolites with immunomodulatory capacity such as SCFAs.
PMID: 33446604
ISSN: 1399-3003
CID: 4747282