Try a new search

Format these results:

Searched for:

person:yuana01

in-biosketch:yes

Total Results:

26


Deleting the phosphorylated tail domain of the neurofilament heavy subunit does not alter neurofilament transport rate in vivo

Yuan, Aidong; Nixon, Ralph A; Rao, Mala V
Phosphorylation of the carboxyl tail domains of the neurofilament heavy (NF-H) and middle molecular weight (NF-M) subunits has been proposed to regulate the axonal transport of neurofilaments. To test this hypothesis, we recently constructed mice lacking the extensively phosphorylated NF-H tail domain (NF-HtailDelta) and showed that the transport rate of neurofilaments in optic axons is unaltered in the absence of this domain [M.V. Rao, M.L. Garcia, Y. Miyazaki, T. Gotow, A. Yuan, S. Mattina, C.M. Ward, N.A. Calcutt, Y. Uchiyama, R.A. Nixon, D.W. Cleveland, Gene replacement in mice reveals that the heavily phosphorylated tail of neurofilament heavy subunit does not affect axonal caliber or the transit of cargoes in slow axonal transport, J. Cell Biol. 158 (2002) 681-693]. However, Shea et al. proposed that deletion of NF-H carboxyl-terminal region accelerates the transport of a subpopulation of neurofilaments based on minor differences between tail-deleted and control mice in our axonal transport analysis. Here, we present additional evidence that neurofilament transport rate is unchanged after deleting the phosphorylated NF-H tail domain, establishing unequivocally that the NF-H tail domain alone does not regulate the rate of neurofilament transport in optic axons in vivo. Possible roles for tail domains as cross-bridges between a neurofilament and its neighbors or other cytoskeletal elements is discussed
PMID: 16266786
ISSN: 0304-3940
CID: 60252

The neurofilament middle molecular mass subunit carboxyl-terminal tail domains is essential for the radial growth and cytoskeletal architecture of axons but not for regulating neurofilament transport rate

Rao, Mala V; Campbell, Jabbar; Yuan, Aidong; Kumar, Asok; Gotow, Takahiro; Uchiyama, Yasuo; Nixon, Ralph A
The phosphorylated carboxyl-terminal 'tail' domains of the neurofilament (NF) subunits, NF heavy (NF-H) and NF medium (NF-M) subunits, have been proposed to regulate axon radial growth, neurofilament spacing, and neurofilament transport rate, but direct in vivo evidence is lacking. Because deletion of the tail domain of NF-H did not alter these axonal properties (Rao, M.V., M.L. Garcia, Y. Miyazaki, T. Gotow, A. Yuan, S. Mattina, C.M. Ward, N.S. Calcutt, Y. Uchiyama, R.A. Nixon, and D.W. Cleveland. 2002. J. Cell Biol. 158:681-693), we investigated possible functions of the NF-M tail domain by constructing NF-M tail-deleted (NF-MtailDelta) mutant mice using an embryonic stem cell-mediated 'gene knockin' approach that preserves normal ratios of the three neurofilament subunits. Mutant NF-MtailDelta mice exhibited severely inhibited radial growth of both motor and sensory axons. Caliber reduction was accompanied by reduced spacing between neurofilaments and loss of long cross-bridges with no change in neurofilament protein content. These observations define distinctive functions of the NF-M tail in regulating axon caliber by modulating the organization of the neurofilament network within axons. Surprisingly, the average rate of axonal transport of neurofilaments was unaltered despite these substantial effects on axon morphology. These results demonstrate that NF-M tail-mediated interactions of neurofilaments, independent of NF transport rate, are critical determinants of the size and cytoskeletal architecture of axons, and are mediated, in part, by the highly phosphorylated tail domain of NF-M
PMCID:2173612
PMID: 14662746
ISSN: 0021-9525
CID: 40064

Neurofilament transport in vivo minimally requires hetero-oligomer formation

Yuan, Aidong; Rao, Mala V; Kumar, Asok; Julien, Jean-Pierre; Nixon, Ralph A
Neurofilament assembly requires at minimum the polymerization of neurofilament light chain (NF-L) with either neurofilament medium chain (NF-M) or neurofilament heavy chain (NF-H) subunits, but requirements for their axonal transport have long been controversial. Using a gene deletion approach, we generated mice containing only NF-L or NF-M. In vivo pulse radiolabeling analyses in retinal ganglion cell neurons revealed that NF-L alone is incapable of efficient transport, whereas nearly one-half of the normal level of NF-M is transported along optic axons in the absence of the other triplet subunits. Under these conditions, however, NF-M transport is completely abolished by deleting alpha-internexin. Our results strongly suggest that efficient neurofilament protein transport in vivo minimally requires hetero-oligomer formation. They also show that NF-M can partner with intermediate filament proteins other than the NF-H and NF-L subunits in neurons to support slow transport and possibly other functions of neuronal intermediate filaments
PMID: 14561875
ISSN: 1529-2401
CID: 39029

Myosin Va binding to neurofilaments is essential for correct myosin Va distribution and transport and neurofilament density

Rao, Mala V; Engle, Linda J; Mohan, Panaiyur S; Yuan, Aidong; Qiu, Dike; Cataldo, Anne; Hassinger, Linda; Jacobsen, Stephen; Lee, Virginia M-Y; Andreadis, Athena; Julien, Jean-Pierre; Bridgman, Paul C; Nixon, Ralph A
The identification of molecular motors that modulate the neuronal cytoskeleton has been elusive. Here, we show that a molecular motor protein, myosin Va, is present in high proportions in the cytoskeleton of mouse CNS and peripheral nerves. Immunoelectron microscopy, coimmunoprecipitation, and blot overlay analyses demonstrate that myosin Va in axons associates with neurofilaments, and that the NF-L subunit is its major ligand. A physiological association is indicated by observations that the level of myosin Va is reduced in axons of NF-L-null mice lacking neurofilaments and increased in mice overexpressing NF-L, but unchanged in NF-H-null mice. In vivo pulse-labeled myosin Va advances along axons at slow transport rates overlapping with those of neurofilament proteins and actin, both of which coimmunoprecipitate with myosin Va. Eliminating neurofilaments from mice selectively accelerates myosin Va translocation and redistributes myosin Va to the actin-rich subaxolemma and membranous organelles. Finally, peripheral axons of dilute-lethal mice, lacking functional myosin Va, display selectively increased neurofilament number and levels of neurofilament proteins without altering axon caliber. These results identify myosin Va as a neurofilament-associated protein, and show that this association is essential to establish the normal distribution, axonal transport, and content of myosin Va, and the proper numbers of neurofilaments in axons
PMCID:2173037
PMID: 12403814
ISSN: 0021-9525
CID: 32536

Gene replacement in mice reveals that the heavily phosphorylated tail of neurofilament heavy subunit does not affect axonal caliber or the transit of cargoes in slow axonal transport

Rao, Mala V; Garcia, Michael L; Miyazaki, Yukio; Gotow, Takahiro; Yuan, Aidong; Mattina, Salvatore; Ward, Chris M; Calcutt, Nigel A; Uchiyama, Yasuo; Nixon, Ralph A; Cleveland, Don W
The COOH-terminal tail of mammalian neurofilament heavy subunit (NF-H), the largest neurofilament subunit, contains 44-51 lysine-serine-proline repeats that are nearly stoichiometrically phosphorylated after assembly into neurofilaments in axons. Phosphorylation of these repeats has been implicated in promotion of radial growth of axons, control of nearest neighbor distances between neurofilaments or from neurofilaments to other structural components in axons, and as a determinant of slow axonal transport. These roles have now been tested through analysis of mice in which the NF-H gene was replaced by one deleted in the NF-H tail. Loss of the NF-H tail and all of its phosphorylation sites does not affect the number of neurofilaments, alter the ratios of the three neurofilament subunits, or affect the number of microtubules in axons. Additionally, it does not reduce interfilament spacing of most neurofilaments, the speed of action potential propagation, or mature cross-sectional areas of large motor or sensory axons, although its absence slows the speed of acquisition of normal diameters. Most surprisingly, at least in optic nerve axons, loss of the NF-H tail does not affect the rate of transport of neurofilament subunits
PMCID:2174004
PMID: 12186852
ISSN: 0021-9525
CID: 32535

Slow axonal transport of the cytosolic chaperonin CCT with Hsc73 and actin in motor neurons

Bourke, Gregory J; El Alami, Wathik; Wilson, Suzanne J; Yuan, Aidong; Roobol, Anne; Carden, Martin J
Molecular chaperones are well known for their role in facilitating the folding of nascent and newly synthesized proteins, but have other roles, including the assembly, translocation and renaturation of intracellular proteins. Axons are convenient tissues for the study of some of these other roles because they lack the capacity for significant protein synthesis. We examine the axonal transport of the cytosolic chaperonin containing T- complex polypeptide 1 (CCT) by labeling lumbar motor neurons with [35S]methionine and examining sciatic nerve proteins by 2-D gel electrophoresis and immunoblotting. All CCT subunits identifiable with specific antibodies, namely CCTalpha, CCTbeta, CCTgamma and CCTepsilon/CCTtheta; (the latter two subunits colocalized in analyses of rat nerve samples), appeared to be labeled in 'slow component b' of axonal transport along with the molecular chaperone Hsc73 and actin, a major folding substrate for CCT. Our results are consistent with molecular chaperones having a post-translational role in maintaining the native form of actin during its slow transport to the axon terminal and ensuring its correct assembly into microfilaments
PMID: 11933046
ISSN: 0360-4012
CID: 60835