Try a new search

Format these results:

Searched for:

person:lw901

Total Results:

217


An evaluation of novel AMP2-coated electrospun composite scaffolds for intraoral bone regeneration: a proof-of-concept in vivo study

Slavin, Blaire V; Wu, Shangtao; Sturm, Savanah R; Hwang, Kevin K; Almada, Ricky; Mirsky, Nicholas A; Nayak, Vasudev Vivekanand; Witek, Lukasz; Coelho, Paulo G
BACKGROUND/UNASSIGNED:performance of a novel electrospun composite scaffold coated in a recombinant variant of human bone morphogenetic protein-2 (OsteoAdapt) relative to a porcine-derived xenograft. Further, it sought to determine if OsteoAdapt would remain within the defect without a membrane in place, as this is not feasible with the particulate xenograft currently used in clinical practice. METHODS/UNASSIGNED:, bone regeneration was assessed through qualitative volumetric reconstruction, qualitative and quantitative histological analyses. RESULTS/UNASSIGNED:= 0.982, respectively). However, qualitative analysis of the histological micrographs demonstrated advanced bone healing characterized by an abundance of nucleation sites for regeneration to occur in defects treated with OA relative to the CTRL. Bone overgrowth beyond the limits of defect borders was observed in groups treated OA/ZM and OA/P/ZM. In contrast to the treatment groups, minimal woven bone was visualized in the CTRL group. CONCLUSION/UNASSIGNED:. This suggests that the novel combination of AMP-2 and a bioceramic/synthetic polymer-based electrospun scaffold is a suitable candidate for GBR procedures, without a barrier membrane to secure its place within a defect.
PMCID:12043485
PMID: 40313641
ISSN: 2296-4185
CID: 5834402

Treatment of Bone Defects and Nonunion via Novel Delivery Mechanisms, Growth Factors, and Stem Cells: A Review

Ehlen, Quinn T; Costello, Joseph P; Mirsky, Nicholas A; Slavin, Blaire V; Parra, Marcelo; Ptashnik, Albert; Nayak, Vasudev Vivekanand; Coelho, Paulo G; Witek, Lukasz
Bone nonunion following a fracture represents a significant global healthcare challenge, with an overall incidence ranging between 2 and 10% of all fractures. The management of nonunion is not only financially prohibitive but often necessitates invasive surgical interventions. This comprehensive manuscript aims to provide an extensive review of the published literature involving growth factors, stem cells, and novel delivery mechanisms for the treatment of fracture nonunion. Key growth factors involved in bone healing have been extensively studied, including bone morphogenic protein (BMP), vascular endothelial growth factor (VEGF), and platelet-derived growth factor. This review includes both preclinical and clinical studies that evaluated the role of growth factors in acute and chronic nonunion. Overall, these studies revealed promising bridging and fracture union rates but also elucidated complications such as heterotopic ossification and inferior mechanical properties associated with chronic nonunion. Stem cells, particularly mesenchymal stem cells (MSCs), are an extensively studied topic in the treatment of nonunion. A literature search identified articles that demonstrated improved healing responses, osteogenic capacity, and vascularization of fractures due to the presence of MSCs. Furthermore, this review addresses novel mechanisms and materials being researched to deliver these growth factors and stem cells to nonunion sites, including natural/synthetic polymers and bioceramics. The specific mechanisms explored in this review include BMP-induced osteoblast differentiation, VEGF-mediated angiogenesis, and the role of MSCs in multilineage differentiation and paracrine signaling. While these therapeutic modalities exhibit substantial preclinical promise in treating fracture nonunion, there remains a need for further research, particularly in chronic nonunion and large animal models. This paper seeks to identify such translational hurdles which must be addressed in order to progress the aforementioned treatments from the lab to the clinical setting.
PMID: 39527574
ISSN: 2373-9878
CID: 5752692

Tissue-Safe Low-Temperature Plasma Treatment for Effective Management of Mature Peri-Implantitis Biofilms on Titanium Surfaces

Panariello, Beatriz H D; Denucci, Giovanna C; Tonon, Caroline C; Eckert, George J; Witek, Lukasz; Nayak, Vasudev V; Coelho, Paulo G; Duarte, Simone
The unique screw-shape design and microstructure of implants pose a challenge for mechanical debridement in removing biofilms. Biofilms exhibit increased resistance to antimicrobials relative to single planktonic cells, emphasizing the need for effective biofilm removal during periodontal therapy for peri-implantitis treatment. To tackle this issue, our team evaluated the effectiveness of low-temperature plasma (LTP) for disinfecting titanium discs contaminated with multispecies biofilms associated with peri-implantitis, specifically focusing on biofilms matured for 14 and 21 days as well as biofilms that had formed on Straumann Ti-SLA implants for 21 days. The biofilms included Actinomyces naeslundii, Porphyromonas gingivalis, Streptococcus oralis, and Veillonella dispar, which were grown in anaerobic conditions. These biofilms were subjected to LTP treatment for 1, 3, and 5 min, using distances of 3 or 10 mm from the LTP nozzle to the samples. Control groups included biofilms formed on Ti discs or implants that received no treatment, exposure to argon flow at 3 or 10 mm of distance for 1, 3, or 5 min, application for 1 min of 14 μg/mL amoxicillin, 140 μg/mL metronidazole, or a blend of both, and treatment with 0.12% chlorhexidine (CHX) for 1 min. For the implants, 21-day-old biofilms were treated with 0.12% CHX 0.12% for 1 min and LTP for 1 min at a distance of 3 mm for each quadrant. Biofilm viability was assessed through bacterial counting and confocal laser scanning microscopy. The impact of LTP was investigated on reconstituted oral epithelia (ROE) contaminated with P. gingivalis, evaluating cytotoxicity, cell viability, and histology. The results showed that a 1 min exposure to LTP at distances of 3 or 10 mm significantly lowered bacterial counts on implants and discs compared to the untreated controls (p < 0.017). LTP exposure yielded lower levels of cytotoxicity relative to the untreated contaminated control after 12 h of contamination (p = 0.038), and cell viability was not affected by LTP (p ≥ 0.05); thus, LTP-treated samples were shown to be safe for tissue applications, with low cytotoxicity and elevated cell viability post-treatment, and these results were validated by qualitative histological analysis. In conclusion, the study's results support the effectiveness of 1 min LTP exposure in successfully disinfecting mature peri-implantitis multispecies biofilms on titanium discs and implants. Moreover, it validated the safety of LTP on ROE, suggesting its potential as an adjunctive treatment for peri-implantitis.
PMID: 39536298
ISSN: 2373-9878
CID: 5753172

A Simple Staining Method Using Pyronin Y for Laser Scanning Confocal Microscopy to Evaluate Gelatin Cryogels

Reece, Brianna; Bahar, Elizabeth V; Pereira, Angel Cabrera; Witek, Lukasz; Kita, Katsuhiro
This study explores the novel application of pyronin Y for fluorescently labeling extracellular matrices (ECMs) and gelatin cryogels, providing a simple and reliable method for laser scanning confocal microscopy. Pyronin Y exhibited remarkable staining ability of the porous structures of gelatin cryogels, indicating its potential as a reliable tool for evaluating such biomaterials. Confocal imaging of pyronin Y-stained cryogels produced high signal-to-noise ratio images suitable for quantifying pores using Fiji/Image J. Importantly, pyronin Y enabled effective dual-color imaging of cryogel-labeled mesenchymal stem cells, expanding its utility beyond traditional RNA assays. Traditional staining methods like Mason's trichrome and Sirius Red have limitations in cryogel applications. Pyronin Y emerges as a powerful alternative due to its water solubility, minimal toxicity, and stability. Our results demonstrate pyronin Y's ability to specifically stain gelatin cryogel's porous structures, surpassing its weak staining of ECMs in 2D. Confocal imaging revealed enduring staining even under rigorous scanning, with no notable photobleaching observed. Furthermore, pyronin Y's combination with Alexa Fluor 647 for dual-color imaging showed promising results, validating its versatility in fluorescence microscopy. In conclusion, this study establishes pyronin Y as a cost-effective and rapid option for fluorescent staining of gelatin cryogels. Its simplicity, efficacy, and compatibility with confocal microscopy make it a valuable tool for characterizing and evaluating gelatin-based biomaterials, contributing significantly to the field of cryogel imaging. The study opens new avenues for dual-color imaging in biomaterial research and tissue engineering, advancing our understanding of cellular interactions within scaffolds. Key features • Fluorescent staining of gelatin-based cryogels with an inexpensive yet less time-consuming protocol. • Pyronin Y staining is suitable for dual-color confocal imaging by combining with far-red fluorophores (such as Alexa Fluor 647). • The method is conducted routinely. Graphical overview Gelatin cryogel staining using pyronin Y.
PMCID:11588575
PMID: 39600971
ISSN: 2331-8325
CID: 5766192

Exploring Denosumab in the Treatment of Giant Cell Tumors: Clinical Evidence and Controversies

Brochu, Baylee M; Mirsky, Nicholas A; Nayak, Vasudev Vivekanand; Witek, Lukasz; Thaller, Seth R; Carlini, Joao L; Coelho, Paulo G
Giant cell tumors (GCTs) are benign but locally aggressive bone neoplasms that primarily affect skeletally mature individuals. They are characterized by a tendency for recurrence and being associated with significant morbidity. Traditional treatment has focused on surgical resection; however, the role of medical therapies, such as Denosumab, a bone anti-resorptive drug, which has been Food and Drug Administration (FDA)-approved for unresectable GCTs since 2013, recently has gained prominence. Denosumab is a human monoclonal antibody that inhibits receptor activator of nuclear factor kappa B ligand (RANKL). This article aims to consolidate the current literature on Denosumab's efficacy in treating GCTs, highlighting its mechanism of action, clinical evidence, and potential complications. Clinical studies have demonstrated that Denosumab effectively reduces tumor size improving patient outcomes. Yet, some clinicians maintain concerns and reservations regarding local recurrence and malignant transformation. This review discusses the biochemical background of GCTs, current treatment guidelines, challenges, and future directions for research. Ultimately, Denosumab represents a potentially viable advancement in the management of GCTs, particularly in cases where surgical options are limited.
PMID: 39813592
ISSN: 1536-3732
CID: 5776892

Advances in Bioceramics for Bone Regeneration: A Narrative Review

Brochu, Baylee M; Sturm, Savanah R; Kawase De Queiroz Goncalves, Joao Arthur; Mirsky, Nicholas A; Sandino, Adriana I; Panthaki, Kayaan Zubin; Panthaki, Karl Zubin; Nayak, Vasudev Vivekanand; Daunert, Sylvia; Witek, Lukasz; Coelho, Paulo G
Large osseous defects resulting from trauma, tumor resection, or fracture render the inherent ability of the body to repair inadequate and necessitate the use of bone grafts to facilitate the recovery of both form and function of the bony defect sites. In the United States alone, a large number of bone graft procedures are performed yearly, making it an essential area of investigation and research. Synthetic grafts represent a potential alterative to autografts due to their patient-specific customizability, but currently lack widespread acceptance in the clinical space. Early in their development, non-autologous bone grafts composed of metals such as stainless steel and titanium alloys were favorable due to their biocompatibility, resistance to corrosion, mechanical strength, and durability. However, since their inception, bioceramics have also evolved as viable alternatives. This review aims to present an overview of the fundamental prerequisites for tissue engineering devices using bioceramics as well as to provide a comprehensive account of their historical usage and significant advancements over time. This review includes a summary of commonly used manufacturing techniques and an evaluation of their use as drug carriers and bioactive coatings-for therapeutic ion/drug release, and potential avenues to further enhance hard tissue regeneration.
PMCID:11592113
PMID: 39590262
ISSN: 2313-7673
CID: 5766182

Hybrid zinc oxide nanocoating on titanium implants: Controlled drug release for enhanced antibacterial and osteogenic performance in infectious conditions

Zhou, Juncen; Wang, Hanbo; Virtanen, Sannakaisa; Witek, Lukasz; Dong, Hongzhou; Thanassi, David; Shen, Jie; Yang, Yunzhi Peter; Yu, Cunjiang; Zhu, Donghui
Implant-associated bacterial infections are a primary cause of complications in orthopedic implants, and localized drug delivery represents an effective mitigation strategy. Drawing inspiration from the morphology of desiccated soil, our group has developed an advanced drug-delivery system augmented onto titanium (Ti) plates. This system integrates zinc oxide (ZnO) nanorod arrays with a vancomycin drug layer along with a protective Poly(lactic-co-glycolic acid) (PLGA) coating. The binding between the ZnO nanorods and the drug results in attached drug blocks, isolated by desiccation-like cracks, which are then encapsulated by PLGA to enable sustained drug release. Additionally, the release of zinc ions and the generation of reactive oxygen species (ROS) from the ZnO nanorods enhance the antibacterial efficacy. The antibacterial properties of ZnO nanorod-drug-PLGA system have been validated through both in vitro and in vivo studies. Comprehensive investigations were conducted on the impact of bacterial infections on bone defect regeneration and the role of this drug-delivery system in the healing process. Furthermore, the local immune response was analyzed and the immunomodulatory function of the system was demonstrated. Overall, the findings underscore the superior performance of the ZnO nanorod-drug-PLGA system as an efficient and safe approach to combat implant-associated bacterial infections. STATEMENT OF SIGNIFICANCE: Implant-associated bacterial infections pose a significant clinical challenge, particularly in orthopedic procedures. To address this, we developed an innovative ZnO nanorod-drug-PLGA system for local antibiotic delivery on conventional titanium implants. This system is biodegradable and features a unique desiccation-like structure that enables sustained drug release, along with the active substances released from the ZnO nanorods. In a rat calvarial defect model challenged with S. aureus, our system demonstrated remarkable antibacterial efficacy, significantly enhanced bone defect regeneration, and exhibited local immunomodulatory effects that support both infection control and osteogenesis. These breakthrough findings highlight the substantial clinical potential of this novel drug delivery system and introduce a transformative coating strategy to enhance the functionality of traditional metallic biomaterials.
PMID: 39343288
ISSN: 1878-7568
CID: 5713702

Biomimetic Tissue Engineering Strategies for Craniofacial Applications

Fatima Balderrama, Isis; Schafer, Sogand; El Shatanofy, Muhammad; Bergamo, Edmara T P; Mirsky, Nicholas A; Nayak, Vasudev Vivekanand; Marcantonio Junior, Elcio; Alifarag, Adham M; Coelho, Paulo G; Witek, Lukasz
Biomimetics is the science of imitating nature's designs and processes to create innovative solutions for various fields, including dentistry and craniofacial reconstruction. In these areas, biomimetics involves drawing inspiration from living organisms/systems to develop new materials, techniques, and devices that closely resemble natural tissue structures and enhance functionality. This field has successfully demonstrated its potential to revolutionize craniofacial procedures, significantly improving patient outcomes. In dentistry, biomimetics offers exciting possibilities for the advancement of new dental materials, restorative techniques, and regenerative potential. By analyzing the structure/composition of natural teeth and the surrounding tissues, researchers have developed restorative materials that mimic the properties of teeth, as well as regenerative techniques that might assist in repairing enamel, dentin, pulp, cementum, periodontal ligament, and bone. In craniofacial reconstruction, biomimetics plays a vital role in developing innovative solutions for facial trauma, congenital defects, and various conditions affecting the maxillofacial region. By studying the intricate composition and mechanical properties of the skull and facial bones, clinicians and engineers have been able to replicate natural structures leveraging computer-aided design and manufacturing (CAD/CAM) and 3D printing. This has allowed for the creation of patient-specific scaffolds, implants, and prostheses that accurately fit a patient's anatomy. This review highlights the current evidence on the application of biomimetics in the fields of dentistry and craniofacial reconstruction.
PMCID:11506466
PMID: 39451842
ISSN: 2313-7673
CID: 5740232

Effects on dentin nanomechanical properties, cell viability and dentin wettability of a novel plant-derived biomodification monomer

Moreira, Mário A; Moreira, Madiana M; Lomonaco, Diego; Cáceres, Eduardo; Witek, Lukasz; Coelho, Paulo G; Shimizu, Emi; Quispe-Salcedo, Angela; Feitosa, Victor P
OBJECTIVES/OBJECTIVE:To evaluate the effects of dentin biomodification agents (Proanthocyanidin (PAC), Cardol (CD) and Cardol-methacrylate (CDMA) on dentin hydrophilicity by contact angle measurement, viability of dental pulp stem cells (DPSCs) and nanomechanical properties of the hybrid layer (HL). METHODS:CDMA monomer was synthesized from cardol through methacrylic acid esterification. Human extracted third molars were used for all experiments. For nanomechanical tests, specimens were divided in four groups according to the primer solutions (CD, CDMA, PAC and control) were applied before adhesive and composite coating. Nanomechanical properties of the HL were analyzed by nanoindentation test using a Berkovich probe in a nanoindenter. Wettability test was performed on dentin surfaces after 1 min biomodification and measured by contact angle analysis. Cytotoxicity was assessed by a MTT assay with DPSCs after 48 and 72 h. Data were analyzed with Student's t test or Two-way ANOVA and Tukey HSD test (p < 0.05). RESULTS:CD and CDMA solutions achieved greater hydrophobicity and increased the water-surface contact angles when compared to PAC and control groups (p < 0.05). PAC group showed a greater reduction of elastic modulus in nanoindentation experiments when compared to CD and CDMA groups (p < 0.05) after 4 months of aging. CD inhibited cell proliferation compared to all further materials (p < 0.05), whilst CDMA and PAC indicated no cell cytotoxicity to human DPSCs. SIGNIFICANCE/CONCLUSIONS:Cardol-methacrylate provided significantly higher hydrophobicity to dentin and demonstrated remarkable potential as collagen crosslinking, attaining the lowest decrease of HL's mechanical properties. Furthermore, such monomer did not affect pulp cytotoxicity, thereby highlighting promising feasibility for clinical applications.
PMID: 39068089
ISSN: 1879-0097
CID: 5719232

Does cannula's size alter rheological properties of hyaluronic acid filler?

Sisnando, Andrea Lisboa; Nayak, Vasudev Vivekanand; Câmara-Sousa, Mariana Barbosa; Morphy, Omar Neves; Furtado, Gisele R D; Witek, Lukasz; Carbone, Ana Claudia; Rizzatti-Barbosa, Célia Marisa; De la Torre Canales, Giancarlo
This study evaluated the rheological properties of various hyaluronic acid (HA) gels after passing through different-sized cannulas (22-G and 25-G). Five commercial brands of highly crosslinked HA fillers were analyzed: (A) Rennova® Ultra Deep, (B) Restylane® Lyft, (C) Hialurox® - Ultra Lift, (D) Belotero® Volume, and (E) E.P.T.Q S500. Rheological characterization was conducted using an automated controlled stress rheometer. The rheological properties of the fillers were assessed both before and after passing through the cannulas. Each filler brand and cannula size was tested three times by a researcher who was blinded to the commercial brands. For data analysis, frequencies of 0.1, 0.5, and 2 Hz were employed. The rheological properties (storage modulus [G'] and loss modulus [G"]) of the high-crosslink HA fillers did not change after being passed through cannulas of different sizes (22-G and 25-G) (p > 0.109) compared to baseline measurements (no cannula). Furthermore, all fillers displayed desirable solid-like, volumizing behavior at low frequencies and strain amplitudes (<10 %). Under physiologically relevant conditions for skin and facial applications, the cannula size did not alter the rheological properties of high crosslink HA fillers.
PMID: 39343266
ISSN: 1879-0003
CID: 5713692