Searched for: person:novicr01
Novel cassette-based shuttle vector system for gram-positive bacteria
Charpentier, Emmanuelle; Anton, Ana I; Barry, Peter; Alfonso, Berenice; Fang, Yuan; Novick, Richard P
Our understanding of staphylococcal pathogenesis depends on reliable genetic tools for gene expression analysis and tracing of bacteria. Here, we have developed and evaluated a series of novel versatile Escherichia coli-staphylococcal shuttle vectors based on PCR-generated interchangeable cassettes. Advantages of our module system include the use of (i) staphylococcal low-copy-number, high-copy-number, thermosensitive and theta replicons and selectable markers (choice of erythromycin, tetracycline, chloramphenicol, kanamycin, or spectinomycin); (ii) an E. coli replicon and selectable marker (ampicillin); and (iii) a staphylococcal phage fragment that allows high-frequency transduction and an SaPI fragment that allows site-specific integration into the Staphylococcus aureus chromosome. The staphylococcal cadmium-inducible P(cad)-cadC and constitutive P(blaZ) promoters were designed and analyzed in transcriptional fusions to the staphylococcal beta-lactamase blaZ, the Vibrio fischeri luxAB, and the Aequorea victoria green fluorescent protein reporter genes. The modular design of the vector system provides great flexibility and variety. Questions about gene dosage, complementation, and cis-trans effects can now be conveniently addressed, so that this system constitutes an effective tool for studying gene regulation of staphylococci in various ecosystems
PMCID:522135
PMID: 15466553
ISSN: 0099-2240
CID: 47807
Synthesis of group A streptococcal virulence factors is controlled by a regulatory RNA molecule
Mangold, Monika; Siller, Maria; Roppenser, Bernhard; Vlaminckx, Bart J M; Penfound, Tom A; Klein, Reinhard; Novak, Rodger; Novick, Richard P; Charpentier, Emmanuelle
The capacity of pathogens to cause disease depends strictly on the regulated expression of their virulence factors. In this study, we demonstrate that the untranslated mRNA of the recently described streptococcal pleiotropic effect locus (pel), which incidentally contains sagA, the structural gene for streptolysin S, is an effector of virulence factor expression in group A beta-haemolytic streptococci (GAS). Our data suggest that the regulation by pel RNA occurs at both transcriptional (e.g. emm, sic, nga) and post-transcriptional (e.g. SpeB) levels. We could exclude the possibility that the pel phenotype was linked to a polar effect on downstream genes (sagB-I). Remarkably, the RNA effector is regulated in a growth phase-dependent fashion and we provide evidence that pel RNA expression is induced by conditioned media
PMID: 15387826
ISSN: 0950-382x
CID: 63878
Peptide signaling in Staphylococcus aureus and other Gram-positive bacteria
Lyon, Gholson J; Novick, Richard P
There are two basic types of bacterial communication systems--those in which the signal is directed solely at other organisms and those in which the signal is sensed by the producing organism as well. The former are involved primarily in conjugation; the latter in adaptation to the environment. Gram-positive bacteria use small peptides for both types of signaling, whereas Gram-negative bacteria use homoserine lactones. Since adaptation signals are autoinducers the response is population-density-dependent and has been referred to as 'quorum-sensing'. Gram-negative bacteria internalize the signals which act upon an intracellular receptor, whereas Gram-positive bacteria use them as ligands for the extracellular receptor of a two-component signaling module. In both cases, the signal activates a complex adaptation response involving many genes
PMID: 15374643
ISSN: 0196-9781
CID: 63879
Distinguishing human ethnic groups by means of sequences from Helicobacter pylori: lessons from Ladakh
Wirth, Thierry; Wang, Xiaoyan; Linz, Bodo; Novick, Richard P; Lum, J Koji; Blaser, Martin; Morelli, Giovanna; Falush, Daniel; Achtman, Mark
The history of mankind remains one of the most challenging fields of study. However, the emergence of anatomically modern humans has been so recent that only a few genetically informative polymorphisms have accumulated. Here, we show that DNA sequences from Helicobacter pylori, a bacterium that colonizes the stomachs of most humans and is usually transmitted within families, can distinguish between closely related human populations and are superior in this respect to classical human genetic markers. H. pylori from Buddhists and Muslims, the two major ethnic communities in Ladakh (India), differ in their population-genetic structure. Moreover, the prokaryotic diversity is consistent with the Buddhists having arisen from an introgression of Tibetan speakers into an ancient Ladakhi population. H. pylori from Muslims contain a much stronger ancestral Ladakhi component, except for several isolates with an Indo-European signature, probably reflecting genetic flux from the Near East. These signatures in H. pylori sequences are congruent with the recent history of population movements in Ladakh, whereas similar signatures in human microsatellites or mtDNA were only marginally significant. H. pylori sequence analysis has the potential to become an important tool for unraveling short-term genetic changes in human populations
PMCID:387319
PMID: 15051885
ISSN: 0027-8424
CID: 63880
Systemic tumor targeting and killing by Sindbis viral vectors
Tseng, Jen-Chieh; Levin, Brandi; Hurtado, Alicia; Yee, Herman; Perez de Castro, Ignacio; Jimenez, Maria; Shamamian, Peter; Jin, Ruzhong; Novick, Richard P; Pellicer, Angel; Meruelo, Daniel
Successful cancer gene therapy requires a vector that systemically and specifically targets tumor cells throughout the body. Although several vectors have been developed to express cytotoxic genes via tumor-specific promoters or to selectively replicate in tumor cells, most are taken up and expressed by just a few targeted tumor cells. By contrast, we show here that blood-borne Sindbis viral vectors systemically and specifically infect tumor cells. A single intraperitoneal treatment allows the vectors to target most tumor cells, as demonstrated by immunohistochemistry, without infecting normal cells. Further, Sindbis infection is sufficient to induce complete tumor regression. We demonstrate systemic vector targeting of tumors growing subcutaneously, intrapancreatically, intraperitoneally and in the lungs. The vectors can also target syngeneic and spontaneous tumors in immune-competent mice. We document the anti-tumor specificity of a vector that systemically targets and eradicates tumor cells throughout the body without adverse effects
PMID: 14647305
ISSN: 1087-0156
CID: 44812
The staphylococcal saeRS system coordinates environmental signals with agr quorum sensing
Novick, Richard P; Jiang, Dunrong
sae is a two-component signal transduction system in Staphylococcus aureus that regulates the expression of many virulence factors at the transcriptional level and appears to act synergistically with agr in some cases. In this study, the interactions between sae and agr have been characterized in some detail. It was found that the sae locus is larger and more complex than originally envisioned, in that it is expressed from several promoters, giving rise to four or five transcripts, at least three of which are initiated upstream of saeRS and contain two additional reading frames, here designated saeP and saeQ, which are likely to have important roles in sae function. The upstream transcripts are induced during exponential phase concomitantly with the onset of RNAIII synthesis and their induction requires the agr effector, RNAIII, but is blocked by several environmental signals that override the effects of RNAIII. saeR is also required for the induction of these transcripts, so that the sae locus contains an autoinduction circuit. It is suggested that sae is downstream of agr in the exoprotein activation pathway (and also epistatic with agr), that it coordinates the effects of environmental signals with the agr quorum-sensing system, and therefore that it is a key intermediary in the overall regulatory strategy by which S. aureus senses and responds to its environment
PMID: 14523104
ISSN: 1350-0872
CID: 39045
Autoinduction and signal transduction in the regulation of staphylococcal virulence
Novick, Richard P
The accessory genes of Staphylococcus aureus, including those involved in pathogenesis, are controlled by a complex regulatory network that includes at least four two-component systems, one of which, agr, is a quorum sensor, an alternative sigma factor and a large set of transcription factors, including at least two of the superantigen genes, tst and seb. These regulatory genes are hypothesized to act in a time- and population density-dependent manner to integrate signals received from the external environment with the internal metabolic machinery of the cell, in order to achieve the production of particular subsets of accessory/virulence factors at the time and in quantities that are appropriate to the needs of the organism at any given location. From the standpoint of pathogenesis, the regulatory agenda is presumably tuned to particular sites in the host organism. To address this hypothesis, it will be necessary to understand in considerable detail the regulatory interactions among the organism's numerous controlling systems. This review is an attempt to integrate a large body of data into the beginnings of a model that will hopefully help to guide research towards a full-scale test
PMID: 12791129
ISSN: 0950-382x
CID: 39206
Staphylococcus aureus accessory gene regulator (agr) group II: is there a relationship to the development of intermediate-level glycopeptide resistance?
Sakoulas, George; Eliopoulos, George M; Moellering, Robert C Jr; Novick, Richard P; Venkataraman, Lata; Wennersten, Christine; DeGirolami, Paola C; Schwaber, Mitchell J; Gold, Howard S
We previously determined that all 6 Staphylococcus aureus strains with confirmed intermediate-level resistance to glycopeptides (glycopeptide intermediate S. aureus [GISA]) from the United States that we tested belonged to accessory gene regulator (agr) group II. In the present study, we found that 56% of surveyed bloodstream methicillin-resistant S. aureus isolates (n = 148) at our hospital were agr group II, whereas only 24% of methicillin-susceptible S. aureus isolates (n = 33) were agr group II (P = .001). Population analysis of genetically engineered agr-null and parent wild-type strains of groups I, II, and IV revealed that, when agr function is lost, the agr group II knockout S. aureus was most likely to develop glycopeptide heteroresistance after growth in 1 microg/mL but not 16 microg/mL vancomycin. This strain was unique in showing decreased autolysis after growth in these conditions. This study suggests that some S. aureus strains have an intrinsic survival advantage under a glycopeptide selective pressure, which is possibly related to reduced autolysis after exposure to subinhibitory concentrations of glycopeptide
PMID: 12660939
ISSN: 0022-1899
CID: 63881
Mobile genetic elements and bacterial toxinoses: the superantigen-encoding pathogenicity islands of Staphylococcus aureus
Novick, Richard P
It is a remarkable observation that virtually all bacterial toxins associated with specific clinical conditions (toxinoses) are encoded by mobile (and therefore variable) genetic elements. Remarkably, these rarely, if ever, carry determinants of antibiotic resistance. Examples are the toxins responsible for diphtheria, anthrax, tetanus, botulism, cholera, toxic shock, scarlet fever, exfoliative dermatitis, food poisoning, travelers' diarrhea, shigella dysentery, necrotizing pneumonia, and others. A recently discovered example of this phenomenon is the family of related staphylococcal pathogenicity islands encoding superantigens (SAgs). These are 15-20kb elements that occupy constant positions in the chromosomes of toxigenic strains, and are characterized by certain phage-related features, namely genes encoding integrases, helicases, and terminases, and the presence of flanking direct repeats. The prototype, SaPI1 of Staphylococcus aureus, encodes TSST-1 plus two newly described SAgs, SEK and SEL. Other members of the family encode enterotoxins B (SaPI3) and C (SaPI4), plus at least two other SAgs each. SaPI1 and SaPI2, also encoding TSST-1, are excised and induced to replicate by certain staphylococcal phages, and are then encapsidated at high efficiency into phage-like infectious particles with heads about 1/3 the size of the helper phage heads, commensurate with the sizes of the respective genomes. This results in transfer frequencies of the order of 10(8)/ml, and is presumably responsible for the spread of these elements as well as for their acquisition in the first place. In the absence of a helper phage, these two islands are highly stable; neither excision, loss, or transfer occurs at detectable frequency. Several general implications of this phenomenon will be discussed. One is that the determinants of these toxins have been imported from other species and therefore are not components of the basic genome of the extant producing organisms. This raises the question of the biological (adaptive?) roles of these toxins. Another is that the toxin-carrying units can spread among different (though probably related) species. An interesting question is that of the biological basis for the separation of toxin and resistance determinants
PMID: 12726763
ISSN: 0147-619x
CID: 39235
Methicillin-resistant Staphylococcus aureus
Chapter by: Wright, JS; Novick, Richard P
in: MRSA : current perspectives by Fluit, Ad C; Schmitz, FJ (Eds)
Norfolk, England : Caister Academic Press, 2003
pp. ?-?
ISBN: 978-0-9542464-5-7
CID: 3898602