Searched for: person:boutjm01
Silencing of Cav1.2 gene in neonatal cardiomyocytes by lentiviral delivered shRNA
Karnabi, Eddy; Qu, Yongxia; Mancarella, Salvatore; Yue, Yuankun; Wadgaonkar, Raj; Boutjdir, Mohamed
Cav1.2 (alpha1C) and Cav1.3 (alpha1D) L-type Ca channels are co-expressed in the heart. To date, there are no pharmacological or biophysical tools to separate alpha1D from alpha1C Ca currents (I(Ca-L)) in cardiomyocytes. Here, we established a physiological model to study alpha1D I(Ca-L) in native myocytes using RNA interference. Transfection of rat neonatal cardiomyocytes (RNC) with alpha1C specific siRNA resulted in low silencing efficiency (50-60%) at the mRNA and protein levels. The use of lentivirus shRNA resulted in 100% transfection efficiency and 92% silencing of the alpha1C gene by real-time PCR and Western blot. Electrophysiological experiments showed that the total I(Ca-L) was similarly reduced by 80% in lentivirus transfected cells. Both biochemical and functional data demonstrated high transfection and silencing efficiency in the cardiomyocytes using lentiviral shRNA. This novel approach allows for the assessments of the roles of alpha1C and alpha1D Ca channels in native myocytes and could be used to examine their roles in physiological and pathological settings
PMCID:4334931
PMID: 19422800
ISSN: 1090-2104
CID: 99214
Phosphorylation of the consensus sites of protein kinase A on alpha1D L-type calcium channel
Ramadan, Omar; Qu, Yongxia; Wadgaonkar, Raj; Baroudi, Ghayath; Karnabi, Eddy; Chahine, Mohamed; Boutjdir, Mohamed
The novel alpha(1D) L-type Ca(2+) channel is expressed in supraventricular tissue and has been implicated in the pacemaker activity of the heart and in atrial fibrillation. We recently demonstrated that PKA activation led to increased alpha(1D) Ca(2+) channel activity in tsA201 cells by phosphorylation of the channel protein. Here we sought to identify the phosphorylated PKA consensus sites on the alpha(1) subunit of the alpha(1D) Ca(2+) channel by generating GST fusion proteins of the intracellular loops, N terminus, proximal and distal C termini of the alpha(1) subunit of alpha(1D) Ca(2+) channel. An in vitro PKA kinase assay was performed for the GST fusion proteins, and their phosphorylation was assessed by Western blotting using either anti-PKA substrate or anti-phosphoserine antibodies. Western blotting showed that the N terminus and C terminus were phosphorylated. Serines 1743 and 1816, two PKA consensus sites, were phosphorylated by PKA and identified by mass spectrometry. Site directed mutagenesis and patch clamp studies revealed that serines 1743 and 1816 were major functional PKA consensus sites. Altogether, biochemical and functional data revealed that serines 1743 and 1816 are major functional PKA consensus sites on the alpha(1) subunit of alpha(1D) Ca(2+) channel. These novel findings provide new insights into the autonomic regulation of the alpha(1D) Ca(2+) channel in the heart
PMCID:2643506
PMID: 19074150
ISSN: 0021-9258
CID: 126654
Impaired Ca2+ homeostasis is associated with atrial fibrillation in the alpha1D L-type Ca2+ channel KO mouse
Mancarella, Salvatore; Yue, Yuankun; Karnabi, Eddy; Qu, Yongxia; El-Sherif, Nabil; Boutjdir, Mohamed
The novel alpha1D Ca2+ channel together with alpha1C Ca2+ channel contribute to the L-type Ca2+ current (I(Ca-L)) in the mouse supraventricular tissue. However, its functional role in the heart is just emerging. We used the alpha1D gene knockout (KO) mouse to investigate the electrophysiological features, the relative contribution of the alpha1D Ca2+ channel to the global I(Ca-L), the intracellular Ca2+ transient, the Ca2+ handling by the sarcoplasmic reticulum (SR), and the inducibility of atrial fibrillation (AF). In vivo and ex vivo ECG recordings from alpha1D KO mice demonstrated significant sinus bradycardia, atrioventricular block, and vulnerability to AF. The wild-type mice showed no ECG abnormalities and no AF. Patch-clamp recordings from isolated alpha1D KO atrial myocytes revealed a significant reduction of I(Ca-L) (24.5%; P < 0.05). However, there were no changes in other currents such as I(Na), I(Ca-T), I(K), I(f), and I(to) and no changes in alpha1C mRNA levels of alpha1D KO atria. Fura 2-loaded atrial myocytes showed reduced intracellular Ca2+ transient (approximately 40%; P < 0.05) and rapid caffeine application caused a 17% reduction of the SR Ca2+ content (P < 0.05) and a 28% reduction (P < 0.05) of fractional SR Ca2+ release in alpha1D KO atria. In conclusion, genetic deletion of alpha1D Ca2+ channel in mice results in atrial electrocardiographic abnormalities and AF vulnerability. The electrical abnormalities in the alpha1D KO mice were associated with a decrease in the total I(Ca-L) density, a reduction in intracellular Ca2+ transient, and impaired intracellular Ca2+ handling. These findings provide new insights into the mechanism leading to atrial electrical dysfunction in the alpha1D KO mice
PMCID:2614575
PMID: 18790836
ISSN: 0363-6135
CID: 126655
Role of subendocardial Purkinje network in triggering torsade de pointes arrhythmia in experimental long QT syndrome
Ben Caref, E; Boutjdir, Mohamed; Himel, Herman D; El-Sherif, Nabil
AIMS: The present study addresses the controversy regarding the 'primary' role of the subendocardial Purkinje network in triggering torsade de pointes (TdP) ventricular tachyarrhythmia (VAs) in the long QT syndrome (LQTS). METHODS AND RESULTS: We investigated the well-established canine anthopleurin-A (AP-A) surrogate model of LQT3 to study the role of the subendocardial Purkinje network in triggering VAs. Three-dimensional activation and repolarization patterns were analysed from unipolar extracellular electrograms utilizing 64 plunge needle electrodes. In 6 dogs, the animals were placed on cardiopulmonary bypass and chemical ablation of the endocardial Purkinje network was obtained using Lugol's solution. Spontaneous VAs consistently developed in response to AP-A infusion and were triggered by a subendocardial focal activity acting on a substrate of spatial three-dimensional dispersion of repolarization. Endocardial ablation was considered successful by the development of complete atrioventricular block in the absence of ventricular escape rhythm. Following endocardial ablation spontaneous VAs were no longer observed. However, an appropriately coupled premature stimulus consistently induced re-entrant VAs. CONCLUSION: The present study strongly suggests that in the LQTS, focal activity generated in subendocardial Purkinje tissue is the primary, if not the only, trigger for TdP VAs by acting on a substrate of three-dimensional dispersion of myocardial repolarization to induce re-entrant excitation
PMID: 18757866
ISSN: 1532-2092
CID: 126656
Protein kinase C activation inhibits alpha1D L-type Ca channel: a single-channel analysis
Chahine, M; Qu, Y; Mancarella, S; Boutjdir, M
The recently reported alpha1D Ca channel in the heart is known to be regulated by protein kinase C (PKC) at the whole cell level and has been implicated in atrial fibrillation. The biophysical basis of this regulation at the single-channel level is not known. Therefore, the effect of PKC activation was studied on alpha1D Ca channel expressed in tsA201 cells using cell-attached configuration. Unitary currents were recorded in the presence of 70 mM Ba2+ as the charge carrier at room temperature. Under basal condition, channel activity was rare and infrequent; however, Bay K 8644 (1 microM) induced channel openings with a conductance of 22.3 pS. Single channel analysis of open and closed time distributions were best fitted with a single exponential. PKC activation by 4alpha-phorbol 12-myristate 13-acetate (PMA; 10 nM), a phorbol ester derivative, resulted in a decrease in open probability and increase in closed-time without any significant effect on the conductance of the alpha1D Ca channel. This is consistent with a decreased entry of alpha1D Ca channel into open states in the presence of PMA. PMA effects could not be reproduced by 4-alpha Phorbol, an inactive PMA analogue. These data show, for the first time, (1) the alpha1D Ca channel activity at the single-channel level and (2) the biophysical basis by which PKC activation inhibits the alpha1D Ca channel. The shortening of the open-time and the lengthening of the closed-time constants and the increase in blank sweeps may explain the inhibition of the previously reported whole-cell alpha1D Ca current. Altogether, these data are essential for understanding the complex role of alpha1D Ca channel not only in physiological settings but also in pathological settings such as atrial fibrillation
PMID: 17909852
ISSN: 0031-6768
CID: 135309
Reduction of L-type Ca2+ current results in electrocardiographic abnormalities in alpha(1D) L-type Ca2+ channel knock out mice [Meeting Abstract]
Mancarella, S; Yue, Y; Ou, Y; Boutjdir, M
ISI:000250394301275
ISSN: 0009-7322
CID: 75967
The dual-specificity kinases, TOPK and DYRK1A, are critical for oocyte maturation induced by wild-type--but not by oncogenic--ras-p21 protein
Qu, Yongxia; Adler, Victor; Izotova, Lara; Pestka, Sidney; Bowne, Wilbur; Michl, Josef; Boutjdir, Mohamed; Friedman, Fred K; Pincus, Matthew R
We have previously found that oncogenic ras-p21 and insulin, which activates wild-type ras-21 protein, both induce Xenopus laevis oocyte maturation that is dependent on activation of raf. However, oncogenic ras-p21 utilizes raf-dependent activation of the two classic raf targets, MEK and MAP kinase (MAPK or ERK) while insulin-activated wild-type ras-p21 does not depend on activation of these two kinases. Utilizing a microarray containing the entire Xenopus genome, we discovered two dual specificity kinases, T-Cell Origin Protein Kinase (TOPK), known to bind to raf and the nuclear kinase, DYRK1A, that are expressed at much higher levels in insulin-matured oocytes. Using SiRNA's directed against expression of both of these proteins, we now show that each inhibits insulin-but not oncogenic ras-p21-induced oocyte maturation. Control siRNA's have no effect on either agent in induction of maturation. We find that each SiRNA 'knocks down' expression of its target protein while not affecting expression of the other protein. These results suggest that both proteins are required for maturation induced by wild-type, but not oncogenic, ras-p21. They also suggest that oncogenic and wild-type ras-p21 utilize pathways that become divergent downstream of raf. On the basis of these findings, we propose a model for two signal transduction pathways by oncogenic and activated wild-type ras-p21 showing points of overlap and divergence
PMID: 17569632
ISSN: 1093-9946
CID: 126657
Protective role of intracellular zinc in myocardial ischemia/reperfusion is associated with preservation of protein kinase C isoforms
Karagulova, Gulnura; Yue, Yuankun; Moreyra, Abel; Boutjdir, Mohamed; Korichneva, Irina
The recent discovery of zinc signals and their essential role in the redox signaling network implies that zinc homeostasis and the function of zinc-containing proteins are probably altered as a result of oxidative stress, suggesting new targets for pharmacological intervention. We hypothesized that the level of intracellular labile zinc is changed in hearts subjected to ischemia/reperfusion (I/R) and investigated whether the maintenance of myocardial zinc status protected heart functions. Using fluorescent imaging, we demonstrated decreased levels of labile zinc in the I/R hearts. Phorbol 12-myristate 13-acetate, a known trigger of zinc release, liberated zinc ions in control hearts but failed to produce any increase in zinc levels in the I/R rat hearts. Adding the zinc ionophore pyrithione at reperfusion improved myocardial recovery up to 100% and reduced the incidence of arrhythmias more than 2-fold. This effect was dose-dependent, and high concentrations of zinc were toxic. Adding membrane-impermeable zinc chloride was ineffective. Hearts from rats receiving zinc pyrithione supplements in their diet fully recovered from I/R. The recovery was associated with the prevention of degradation of the two protein kinase C isoforms, delta and epsilon, during I/R. In conclusion, our results suggest a protective role of intracellular zinc in myocardial recovery from oxidative stress imposed by I/R. The data support the potential clinical use of zinc ionophores in the settings of acute redox stress in the heart.
PMID: 17322024
ISSN: 0022-3565
CID: 72809
Expression of skeletal muscle Na(V)1.4 Na channel isoform in canine cardiac Purkinje myocytes
Qu, Yongxia; Karnabi, Eddy; Chahine, Mohamed; Vassalle, Mario; Boutjdir, Mohamed
BACKGROUND AND AIM: The action potential plateau of Purkinje fibers is particularly sensitive to tetrodotoxin (TTX) and this could be due to a TXX-sensitive Na(+) current. The expression of TTX-sensitive neuronal Na(V)1.1 and Na(V)1.2 isoforms has been reported in canine Purkinje myocytes. Our aim was to investigate by means of biochemical and functional techniques whether the TTX-sensitive skeletal Na(V)1.4 isoform is also expressed in canine cardiac Purkinje myocytes. METHODS AND RESULTS: Using Na(V)1.4 specific primers, a PCR product corresponding to Na(V)1.4 was amplified from canine Purkinje fibers RNA and confirmed by sequencing and megablast of the gene bank. Confocal indirect immunostaining using anti-Na(V)1.4 antibody demonstrates distinct sarcolemmal staining pattern compared to that of the cardiac isoform Na(V)1.5. Expression of Na(V)1.4 in tsA201 cells yielded a TTX-sensitive Na(+) current with an IC(50) of 10nM. CONCLUSIONS: These results demonstrate the expression of the TTX-sensitive Na(V)1.4 channel in canine cardiac Purkinje myocytes. This novel finding suggests a role of Na(V)1.4 channel in Purkinje myocytes and thus has important clinical implications for the mechanisms and management of ventricular arrhythmias originating in the Purkinje network
PMCID:1849952
PMID: 17286959
ISSN: 0006-291x
CID: 126659
RNase protection assay for quantifying gene expression levels
Qu, Yongxia; Boutjdir, Mohamed
Quantifying the level of mRNA is central to the study of mammalian gene expression. Conventional approaches such as Northern blotting are often prone to low sensitivity and reproducibility. The RNase protection assay (RPA) provides a sensitive alternative for the detection and quantification of mRNA. The RPA is based on the hybridization in solution of a labeled single-stranded antisense RNA probe with a target mRNA. After hybridization, single-strand specific RNases are then used to digest away unhybridized RNA. The hybrid can be resolved by a denaturing gel. Subsequent detection will reveal the appropriate-sized gel band corresponding to the target mRNA. The major advantage of RPA is the high sensitivity and the simultaneous detection and quantification of multiple mRNA targets in a single RNA sample. The primary limitation of RPA is the lack of information on transcript size
PMID: 17568123
ISSN: 1064-3745
CID: 126658