Try a new search

Format these results:

Searched for:

person:boutjm01

Total Results:

181


Protective role of intracellular zinc in myocardial ischemia/reperfusion is associated with preservation of protein kinase C isoforms

Karagulova, Gulnura; Yue, Yuankun; Moreyra, Abel; Boutjdir, Mohamed; Korichneva, Irina
The recent discovery of zinc signals and their essential role in the redox signaling network implies that zinc homeostasis and the function of zinc-containing proteins are probably altered as a result of oxidative stress, suggesting new targets for pharmacological intervention. We hypothesized that the level of intracellular labile zinc is changed in hearts subjected to ischemia/reperfusion (I/R) and investigated whether the maintenance of myocardial zinc status protected heart functions. Using fluorescent imaging, we demonstrated decreased levels of labile zinc in the I/R hearts. Phorbol 12-myristate 13-acetate, a known trigger of zinc release, liberated zinc ions in control hearts but failed to produce any increase in zinc levels in the I/R rat hearts. Adding the zinc ionophore pyrithione at reperfusion improved myocardial recovery up to 100% and reduced the incidence of arrhythmias more than 2-fold. This effect was dose-dependent, and high concentrations of zinc were toxic. Adding membrane-impermeable zinc chloride was ineffective. Hearts from rats receiving zinc pyrithione supplements in their diet fully recovered from I/R. The recovery was associated with the prevention of degradation of the two protein kinase C isoforms, delta and epsilon, during I/R. In conclusion, our results suggest a protective role of intracellular zinc in myocardial recovery from oxidative stress imposed by I/R. The data support the potential clinical use of zinc ionophores in the settings of acute redox stress in the heart.
PMID: 17322024
ISSN: 0022-3565
CID: 72809

Expression of skeletal muscle Na(V)1.4 Na channel isoform in canine cardiac Purkinje myocytes

Qu, Yongxia; Karnabi, Eddy; Chahine, Mohamed; Vassalle, Mario; Boutjdir, Mohamed
BACKGROUND AND AIM: The action potential plateau of Purkinje fibers is particularly sensitive to tetrodotoxin (TTX) and this could be due to a TXX-sensitive Na(+) current. The expression of TTX-sensitive neuronal Na(V)1.1 and Na(V)1.2 isoforms has been reported in canine Purkinje myocytes. Our aim was to investigate by means of biochemical and functional techniques whether the TTX-sensitive skeletal Na(V)1.4 isoform is also expressed in canine cardiac Purkinje myocytes. METHODS AND RESULTS: Using Na(V)1.4 specific primers, a PCR product corresponding to Na(V)1.4 was amplified from canine Purkinje fibers RNA and confirmed by sequencing and megablast of the gene bank. Confocal indirect immunostaining using anti-Na(V)1.4 antibody demonstrates distinct sarcolemmal staining pattern compared to that of the cardiac isoform Na(V)1.5. Expression of Na(V)1.4 in tsA201 cells yielded a TTX-sensitive Na(+) current with an IC(50) of 10nM. CONCLUSIONS: These results demonstrate the expression of the TTX-sensitive Na(V)1.4 channel in canine cardiac Purkinje myocytes. This novel finding suggests a role of Na(V)1.4 channel in Purkinje myocytes and thus has important clinical implications for the mechanisms and management of ventricular arrhythmias originating in the Purkinje network
PMCID:1849952
PMID: 17286959
ISSN: 0006-291x
CID: 126659

RNase protection assay for quantifying gene expression levels

Qu, Yongxia; Boutjdir, Mohamed
Quantifying the level of mRNA is central to the study of mammalian gene expression. Conventional approaches such as Northern blotting are often prone to low sensitivity and reproducibility. The RNase protection assay (RPA) provides a sensitive alternative for the detection and quantification of mRNA. The RPA is based on the hybridization in solution of a labeled single-stranded antisense RNA probe with a target mRNA. After hybridization, single-strand specific RNases are then used to digest away unhybridized RNA. The hybrid can be resolved by a denaturing gel. Subsequent detection will reveal the appropriate-sized gel band corresponding to the target mRNA. The major advantage of RPA is the high sensitivity and the simultaneous detection and quantification of multiple mRNA targets in a single RNA sample. The primary limitation of RPA is the lack of information on transcript size
PMID: 17568123
ISSN: 1064-3745
CID: 126658

Protein kinase C activation inhibits alpha(1D) L-type calcium channel at N-terminal serine 81 phosphorylation site [Meeting Abstract]

Baroudi, G; Ou, Y; Ramadan, O; Chahine, M; Boutjdir, M
ISI:000241792802009
ISSN: 0009-7322
CID: 69549

Protective role of protein kinase C epsilon activation in ischemia-reperfusion arrhythmia

Yue, Yuankun; Qu, Yongxia; Boutjdir, Mohamed
PURPOSE: Ischemic heart disease carries an increased risk of malignant ventricular tachycardia (VT), fibrillation (VF), and sudden cardiac death. Protein kinase C (PKC) epsilon activation has been shown to improve the hemodynamics in hearts subjected to ischemia/reperfusion. However, very little is known about the role of epsilon PKC in reperfusion arrhythmias. Here we show that epsilon PKC activation is anti-arrhythmic and its inhibition is pro-arrhythmic. METHOD: Langendorff-perfused isolated hearts from epsilonPKC agonist (epsilonPKC activation), antagonist (epsilonPKC inhibition) transgenic (TG), and wild-type control mice were subjected to 30 min stabilization period, 10 min global ischemia, and 30 min reperfusion. Action potentials (APs) and calcium transients (CaiT) were recorded simultaneously at 37 degrees C using optical mapping techniques. The incidence of VT and VF was assessed during reperfusion. RESULTS: No VT/VF was seen in any group during the stabilization period in which hearts were perfused with Tyrode's solution. Upon reperfusion, 3 out of the 16 (19%) wild-type mice developed VT but no VF. In epsilonPKC antagonist group, in which epsilonPKC activity was downregulated, 10 out of 13 (76.9%) TG mice developed VT, of which six (46.2%) degenerated into sustained VF upon reperfusion. Interestingly, in epsilonPKC agonist mice, in which the activity of epsilonPKC was upregulated, no VF was observed and only 1 out of 12 mice showed only transient VT during reperfusion. During ischemia and reperfusion, CaiT decay was exceedingly slower in the antagonist mice compared to the other two groups. CONCLUSION: Moderate in vivo activation of epsilonPKC exerts beneficial antiarrhythmic effect vis-a-vis the lethal reperfusion arrhythmias. Abnormal CaiT decay may, in part, contribute to the high incidence of reperfusion arrhythmias in the antagonist mice. These findings have important implications for the development of PKC isozyme targeted therapeutics and subsequently for the treatment of ischemic heart diseases
PMID: 16945341
ISSN: 0006-291x
CID: 69246

Protein kinase C activation inhibits Cav1.3 calcium channel at NH2-terminal serine 81 phosphorylation site

Baroudi, Ghayath; Qu, Yongxia; Ramadan, Omar; Chahine, Mohamed; Boutjdir, Mohamed
The Ca(v)1.3 (alpha(1D)) variant of L-type Ca(2+) channels plays a vital role in the function of neuroendocrine and cardiovascular systems. In this article, we report on the molecular and functional basis of alpha(1D) Ca(2+) channel modulation by protein kinase C (PKC). Specifically, we show that the serine 81 (S81) phosphorylation site at the NH(2)-terminal region plays a critical role in alpha(1D) Ca(2+) channel modulation by PKC. The introduction of a negatively charged residue at position 81, by converting serine to aspartate, mimicked the PKC phosphorylation effect on alpha(1D) Ca(2+) channel. The modulation of alpha(1D) Ca(2+) channel by PKC was prevented by dialyzing cells with a 35-amino acid peptide mimicking the alpha(1D) NH(2)-terminal region comprising S81. In addition, the data revealed that only betaII- and epsilonPKC isozymes are implicated in this regulation. These novel findings have significant implications in the pathophysiology of alpha(1D) Ca(2+) channel and in the development of PKC isozyme-targeted therapeutics
PMID: 16973824
ISSN: 0363-6135
CID: 126660

Two dual specificity kinases are preferentially induced by wild-type rather than by oncogenic RAS-P21 in Xenopus oocytes

Qu, Yongxia; Adler, Victor; Chu, Tearina; Platica, Ovidu; Michl, Josef; Pestka, Sidney; Izotova, Lara; Boutjdir, Mohamed; Pincus, Matthew R
In prior studies, we have found that oncogenic ras-p21 protein induces oocyte maturation using pathways that differ from those activated by insulin-induced wild-type ras-p21. Both oncogenic and wild-type ras-p21 require interactions with raf, but unlike oncogenic ras-p21, insulin-activated wild-type ras-p21 does not depend completely on activation of MEK and MAP kinase (MAPK or ERK) on the raf kinase pathway. To determine what raf-dependent but MAPK-independent pathway is activated by wild-type ras-p21, we have analyzed gene expression in oocytes induced to mature either with oncogenic ras-p21 or with insulin using a newly available Xenopus gene array. We find a number of proteins that are preferentially expressed in one or the other system. Of these, two proteins, both dual function kinases, T-Cell Origin Protein Kinase (TOPK) and the nuclear kinase, DYRK1A, are preferentially expressed in the insulin system. Confirming this finding, blots of lysates of oocytes, induced to mature with oncogenic ras-p21 and insulin, with anti-TOPK and anti-DYRK1A show much higher protein expression in the lysates from the insulin-matured oocytes. Neither of these kinases activates or is activated by MAPK and is therefore an attractive candidate for being on a signal transduction pathway that is unique to insulin-activated wild-type ras-p21-induced oocyte maturation
PMID: 16720323
ISSN: 1093-9946
CID: 126661

The kinetics of spontaneous calcium oscillations and arrhythmogenesis in the in vivo heart during ischemia/reperfusion

Lakireddy, Vikram; Bub, Gil; Baweja, Paramdeep; Syed, Asma; Boutjdir, Mohamed; El-Sherif, Nabil
BACKGROUND: The correlation between spontaneous calcium oscillations (S-CaOs) and arrhythmogenesis has been investigated in a number of theoretical and experimental in vitro models. There is an obvious lack of studies that directly investigate how the kinetics of S-CaOs correlates with a specific arrhythmia in the in vivo heart. OBJECTIVES: The purpose of the study is to investigate the correlation between the kinetics of S-CaOs and arrhythmogenesis in the intact heart using an experimental model of ischemia/reperfusion (I/R). METHODS: Perfused Langendorff guinea pig (GP) hearts were subjected to global I/R (10-15 minutes/10-15 minutes). The heart was stained with a voltage-sensitive dye (RH237) and loaded with a Ca2+ indicator (Rhod-2 AM). Membrane voltage (Vm) and intracellular calcium transient (Ca(i)T) were simultaneously recorded with an optical mapping system of two 16 x 16 photodiode arrays. S-CaOs were considered to arise from a localized focal site within the mapped surface when these preceded the associated membrane depolarizations by 2-15 ms. RESULTS: In 135 episodes of ventricular arrhythmias from 28 different GP experiments, 23 were linked to S-CaOs that were considered to arise from or close to the mapped epicardial window. Self-limited or sustained S-CaOs had a cycle length of 130-430 ms and could trigger propagated ventricular depolarizations. Self-limited S-CaOs that followed the basic beat action potential (AP)/Ca(i)T closely resembled phase 3 early afterdepolarizations. Fast S-CaOs could remain confined to a localized site (concealed) or exhibit varying conduction patterns. This could manifest as (1) an isolated premature beat (PB), bigeminal, or trigeminal rhythm; (2) ventricular tachycardia (VT) when a regular 2:1 conduction from the focal site develops; or (3) ventricular fibrillation (VF) when a complex conduction pattern results in wave break and reentrant excitation. CONCLUSIONS: The study examined, for the first time in the intact heart, the correlation between the kinetics of focal S-CaOs during I/R and arrhythmogenesis. S-CaOs may remain concealed or manifest as PBs, VT, or VF. A 'benign looking' PB during I/R may represent 'the tip of the iceberg' of an underlying potentially serious arrhythmic mechanism
PMID: 16399055
ISSN: 1547-5271
CID: 126662

Functional interactions of Raf and MEK with Jun-N-terminal kinase (JNK) result in a positive feedback loop on the oncogenic Ras signaling pathway

Adler, Victor; Qu, Yongxia; Smith, Steven J; Izotova, Lara; Pestka, Sidney; Kung, Hsiang-Fu; Lin, Marie; Friedman, Fred K; Chie, Lyndon; Chung, Denise; Boutjdir, Mohamed; Pincus, Matthew R
In previous studies we have found that oncogenic (Val 12)-ras-p21 induces Xenopus laevis oocyte maturation that is selectively blocked by two ras-p21 peptides, 35-47, also called PNC-7, that blocks its interaction with raf, and 96-110, also called PNC-2, that blocks its interaction with jun-N-terminal kinase (JNK). Each peptide blocks activation of both JNK and MAP kinase (MAPK or ERK) suggesting interaction between the raf-MEK-ERK and JNK-jun pathways. We further found that dominant negative raf blocks JNK induction of oocyte maturation, again suggesting cross-talk between pathways. In this study, we have undertaken to determine where these points of cross-talk occur. First, we have immunoprecipitated injected Val 12-Ha-ras-p21 from oocytes and found that a complex forms between ras-p21 raf, MEK, MAPK, and JNK. Co-injection of either peptide, but not a control peptide, causes diminished binding of ras-p21, raf, and JNK. Thus, one site of interaction is cooperative binding of Val 12-ras-p21 to raf and JNK. Second, we have injected JNK, c-raf, and MEK into oocytes alone and in the presence of raf and MEK inhibitors and found that JNK activation is independent of the raf-MEK-MAPK pathway but that activated JNK activates raf, allowing for activation of ERK. Furthermore, we have found that constitutively activated MEK activates JNK. We have corroborated these findings in studies with isolated protein components from a human astrocyte (U-251) cell line; that is, JNK phosphorylates raf but not the reverse; MEK phosphorylates JNK but not the reverse. We further have found that JNK does not phosphorylate MAPK and that MAPK does not phosphorylate JNK. The stress-inducing agent, anisomycin, causes activation of JNK, raf, MEK, and ERK in this cell line; activation of JNK is not inhibitable by the MEK inhibitor, U0126, while activation of raf, MEK, and ERK are blocked by this agent. These results suggest that activated JNK can, in turn, activate not only jun but also raf that, in turn, activates MEK that can then cross-activate JNK in a positive feedback loop
PMID: 16086581
ISSN: 0006-2960
CID: 126663

Novel molecular mechanism involving alpha1D (Cav1.3) L-type calcium channel in autoimmune-associated sinus bradycardia

Qu, Yongxia; Baroudi, Ghayath; Yue, Yuankun; Boutjdir, Mohamed
BACKGROUND: Congenital heart block (CHB) is an autoimmune disease that affects fetuses/infants born to mothers with anti-Ro/La antibodies (positive IgG). Although the hallmark of CHB is complete atrioventricular block, sinus bradycardia has been reported recently in animal models of CHB. Interestingly, knockout of the neuroendocrine alpha1D Ca channel in mice results in significant sinus bradycardia and atrioventricular block, a phenotype reminiscent to that seen in CHB. Here, we tested the hypothesis that the alpha1D Ca channel is a novel target for positive IgG. METHODS AND RESULTS: Reverse transcription-polymerase chain reaction, confocal indirect immunostaining, and Western blot data established the expression of the alpha1D Ca channel in the human fetal heart. The effect of positive IgG on alpha1D Ca current (I(Ca-L)) was characterized in heterologous expression systems (tsA201 cells and Xenopus oocytes) because of the unavailability of alpha1D-specific modulators. alpha1D I(Ca-L) activated at negative potentials (between -60 and -50 mV). Positive IgG inhibited alpha1D I(Ca-L) in both expression systems. This inhibition was rescued by a Ca channel activator, Bay K8644. No effect on alpha1D I(Ca-L) was observed with negative IgG and denatured positive IgG. Western blot data showed that positive IgG binds directly to alpha1D Ca channel protein. CONCLUSIONS: The data are the first to demonstrate (1) expression of the alpha1D Ca channel in human fetal heart, (2) inhibition of alpha1D I(Ca-L) by positive IgG, and (3) direct cross-reactivity of positive IgG with the alpha1D Ca channel protein. Given that alpha1D I(Ca-L) activates at voltages within the pacemaker's diastolic depolarization, inhibition of alpha1D I(Ca-L) in part may account for autoimmune-associated sinus bradycardia. In addition, Bay K8644 rescue of alpha1D I(Ca-L) inhibition opens new directions in the development of pharmacotherapeutic approaches in the management of CHB
PMID: 15939813
ISSN: 1524-4539
CID: 62392