Try a new search

Format these results:

Searched for:

person:lw901

Total Results:

234


Nanoscale physico-mechanical properties of an aging resistant ZTA composite

Benalcázar Jalkh, E B; Coelho, P G; Witek, L; Bergamo, E T P; Lopes, A C O; Monteiro, K N; Cesar, P F; Genova, L A; Lisboa-Filho, P N; Abreu, J L B; Campos, T M B; Canteenwala, A; Bonfante, E A
OBJECTIVE:To characterize the effects of aging on the nanomechanical properties and 3D surface topographical parameters of an experimental Zirconia Toughened Alumina (ZTA) composite compared to its respective individual counterpart materials. METHODS:), while X-ray diffraction (XRD) and scanning electron microscope (SEM) assessed the crystalline content and microstructure. All tests were performed before and after simulated aging (134°C, 2.2 bar, 20 h). Statistical analyses were performed using linear mixed-model and least square difference pos-hoc tests (α = 5%). RESULTS:yielded the highest H and E values (H:21 GPa, E: 254 GPa), followed by ZTA 70/30 (H: 13 GPa, E: 214 GPa) and Zpex (H:11 GPa, E: 167 GPa), all significantly different (p < 0.03). CONCLUSION/CONCLUSIONS:presented high hydrothermal stability with respect to all evaluated variables, where artificial aging significantly increased the monoclinic content and surface roughness of Zpex.
PMID: 34385065
ISSN: 1878-0180
CID: 4999352

Comparative barrier membrane degradation over time: Pericardium versus dermal membranes

Bornert, Fabien; Herber, Valentin; Sandgren, Rebecca; Witek, Lukasz; Coelho, Paulo G; Pippenger, Benjamin E; Shahdad, Shakeel
OBJECTIVE:The effectiveness of GBR procedures for the reconstruction of periodontal defects has been well documented. The objective of this investigation was to evaluate the degradation kinetics and biocompatibility of two resorbable collagen membranes in conjunction with a bovine xenograft material. MATERIALS AND METHODS/METHODS:Lower premolars and first molars were extracted from 18 male Yucatan minipigs. After 4 months of healing, standardized semi-saddle defects were created (12 mm × 8 mm × 8 mm [l˙̇ × W˙ × d]), with 10 mm between adjacent defects. The defects were filled with a bovine xenograft and covered with a either the bilayer collagen membrane (control) or the porcine pericardium-derived collagen membrane (test). Histological analysis was performed after 4, 8, and 12 weeks of healing and the amount of residual membrane evaluated. Non-inferiority was calculated using the Brunner-Langer mixed regression model. RESULTS:Histological analysis indicated the presence of residual membrane in both groups at all time points, with significant degradation noted in both groups at 12 weeks compared to 4 weeks (p = .017). No significant difference in ranked residual membrane scores between the control and test membranes was detected at any time point. CONCLUSIONS:The pericardium-derived membrane was shown to be statistically non-inferior to the control membrane with respect to resorption kinetics and barrier function when utilized for guided bone regeneration in semi-saddle defects in minipigs. Further evaluation is necessary in the clinical setting.
PMID: 33949796
ISSN: 2057-4347
CID: 4872312

Histomorphometric analysis of implant osseointegration using hydrophilic implants in diabetic rats

Schuster, Alessandra Julie; de Abreu, João Luiz Bittencourt; Pola, Natalia Marcumini; Witek, Lukasz; Coelho, Paulo G; Faot, Fernanda
OBJECTIVES/OBJECTIVE:To evaluate peri-implant bone formation of titanium implants using an in vivo rat model with and without uncontrolled diabetes mellitus (DM) to evaluate osseointegration of hydrophobic (Neoporos®) and hydrophilic (Acqua®) surfaces. MATERIALS AND METHODS/METHODS:54 rats were divided into two groups: DM group (DMG) (streptozotocin-induced diabetes) and a control group (CG). Implants with hydrophobic (Neoporos®) and hydrophilic surfaces (Acqua) were placed in the left or right tibia of animals. Animals were further divided into three groups (n = 9) euthanized after 7, 14, or 28 days. Bone-to-implant contact (BIC) and bone area fraction occupancy (BAFO) were assessed in total, cortical, and medullary areas. RESULTS:The DMG group, after a 7-day healing period, yielded with the Acqua implants presented significantly higher total BIC (+37.9%; p=0.03) and trabecular BIC (%) (+46.3%; p=0.02) values in comparison to the Neoporos implants. After 28 days of healing, the CG yielded that the cortical BAFO of Acqua implants to be significantly, 14%, higher (p=0.04) than Neoporos implants. CONCLUSION/CONCLUSIONS:The positive effects of the Acqua surface were able to counteract the adverse impact of uncontrolled DM at early osseointegration periods. After 28 days in vivo, the metabolic systemic impairment caused by DM overcame the surface treatment effect, leading to impaired osseointegration in both hydrophilic and hydrophobic implants. CLINICAL RELEVANCE/CONCLUSIONS:The adverse effects of diabetes mellitus with respect to bone healing may be minimized by deploying implants with strategically modified surfaces. This study evaluated the effects of implants with Acqua® and Neoporos® surfaces in both diabetic and healthy animals. During the initial healing period in diabetic animals, the hydrophilic surface was demonstrated to have beneficial effect on osseointegration in comparison to the hydrophobic surface. The results provide an insight into early healing, but the authors suggest that a future short-term and long-term clinical study is needed to assess the possible benefit of the Acqua® implant as well as in increasing the predictability of implant osseointegration.
PMID: 33765194
ISSN: 1436-3771
CID: 4894722

Effect of supplemental acid-etching on the early stages of osseointegration: A preclinical model

Benalcázar Jalkh, Ernesto B; Parra, Marcelo; Torroni, Andrea; Nayak, Vasudev Vivekanand; Tovar, Nick; Castellano, Arthur; Badalov, Rafael M; Bonfante, Estevam A; Coelho, Paulo G; Witek, Lukasz
PURPOSE:To evaluate the effect of two surface modifications on early osseointegration parameters of conical implants in a translational pre-clinical model. MATERIALS AND METHODS:), surface energy and contact angle. Subsequently, implants were installed in the ilium crest of nine female sheep (weighing ~65 kg). Torque out, histological and histomorphometric analyses were conducted after 3 and 6 weeks in-vivo. The percentage of bone to implant contact (%BIC) and bone area fraction occupancy within implant threads (%BAFO) were quantified, and the results were analyzed using a general linear mixed model analysis as function of surface treatment and time in-vivo. RESULTS:. Torque-out testing yielded significantly higher values for IMP Sur + AE in comparison to the IMP Sur at 3- (62.78 ± 15 and 33.49 ± 15 N.cm, respectively) and 6-weeks (60.74 ± 15 and 39.80 ± 15 N.cm, respectively). Histological analyses depicted similar osseointegration features for both surfaces, where an intramembranous-type healing pattern was observed. At histomorphometric analyses, IMP Sur + AE implants yielded higher values of BIC in comparison to IMP Sur at 3- (40.48 ± 38 and 27.98 ± 38%, respectively) and 6-weeks (45.86 ± 38 and 34.46 ± 38%, respectively). Both groups exhibited a significant increase in %BAFO from 3 (~35%) to 6 weeks (~44%), with no significant differences between surface treatments. CONCLUSION:Supplemental acid-etching and its interplay with implant thread design, positively influenced the BIC and torque-out resistance at early stages of osseointegration.
PMID: 34311324
ISSN: 1878-0180
CID: 4972492

Hydrothermal aging affects the three-dimensional fit and fatigue lifetime of zirconia abutments

Bergamo, Edmara T P; Campos, Tiago M B; Lopes, Adolfo C O; Cardoso, Karina B; Gouvea, Marcus V R; de Araújo-Júnior, Everardo N S; Witek, Lukasz; Gierthmühlen, Petra C; Coelho, Paulo G; Benalcázar Jalkh, Ernesto B; Zahoui, Abbas; de Carvalho, Laura F; Bonfante, Estevam A
OBJECTIVE:Evaluate the effect of aging using two different methods on the three-dimensional fit of zirconia abutments at the implant-abutment connection and estimate the probability of survival of anterior crowns supported by straight and 17-degree angled abutments. MATERIALS AND METHODS/METHODS:Two different zirconia abutment designs, straight and 17-degree angled abutments (n = 63/group), were evaluated in the current study. The abutments were randomly allocated into three experimental groups according to laboratory aging condition (134°C, 2.2 bar, 20 h): (i) control, (ii) autoclave aging, and (iii) hydrothermal reactor aging. Crystalline content was determined by X-Ray diffraction (XRD) and Raman spectroscopy, and microstructure was analyzed using field-emission gun scanning electron microscope (FEG-SEM). Implant-abutment volume misfit was determined in the straight abutments by micro-computed tomography using the silicone replica technique. For fatigue testing, abutments were torqued to the implants and connected to standardized maxillary incisor zirconia crowns. The assemblies were subjected to step-stress accelerated life testing (SSALT) in water until fracture or suspension. The use level probability Weibull curves and probability of survival for a mission of 50,000 cycles at 50, 100, 150 and 200 N were calculated and plotted. Fractured samples were analyzed using a stereomicroscope and scanning electron microscope. RESULTS:). The beta (β) values indicated that failures were predominantly controlled by material strength rather than fatigue damage accumulation for all groups, except for straight control abutments. Irrespective of aging, the probability of survival of straight and angled zirconia abutments was up to 95% (95-100%) at 50 and 100 N. A 50N-increase in the load resulted in wider range of survival estimate, with straight autoclave abutments percentage significantly lower probability of survival (77%) than angled hydrothermal reactor abutments (99%). At 200N, angled hydrothermal reactor (97%) or autoclave (82%) aged abutments demonstrated the highest probability of survival, angled control (71%) and straight hydrothermal reactor (69%) abutments intermediate values, and straight autoclave (23%) and control (7%) abutments the lowest estimate. The failure mode predominantly involved abutment and/or abutment screw fracture for both straight and angled abutments. CONCLUSIONS:Hydrothermal aging significantly influenced volume misfit, as well as the probability of survival of zirconia abutments at higher loads for both angled and straight abutments.
PMID: 34536801
ISSN: 1878-0180
CID: 5012492

Physical and chemical characterization of synthetic bone mineral ink - For additive manufacturing applications

Coelho, Paulo G.; Eckstein, Daniel; Rivera, Cristobal; Nayak, Vasudev Vivekanand; Smay, James E.; Mijares, Dindo; Tovar, Nick; Witek, Lukasz
Bone defects are often linked to congenital disorders, high impact traumas, tumors or oncological resections. Potential treatment options include autografts, allografts, or synthetic grafts, such as bioactive ceramic-based materials which have been successfully utilized in an effort to regenerate bone. β-tricalcium phosphate (β-TCP), is a commonly utilized bioactive ceramic for regenerative purposes with favorable osteoconductive properties. Alternatively, Synthetic Bone Mineral (SBM) has been previously utilized in in vivo experiments as a supplement for bone loss treatment. As a potential alternative to β-TCP, it is also a bioactive ceramic, which consists of a carbonate hydroxyapatite with ionic substitutions such as F−, Zn2+ and Mg2+. The objective of this work was to characterize the physiochemical properties of the colloidal gel obtained from a formulation of SBM and compare the properties directly to β-TCP. Mechanical properties were evaluated for both materials in bulk, using Biaxial Flexural Strength tests. Scanning electron microscopy and micro-computed tomography were utilized to explore the structure of the bulk material and the three dimensionally (3D) printed scaffolds. Inductive coupled plasma (ICP), X-ray diffraction (XRD), and Fourier transform infrared spectrometry (FT-IR), were utilized to determine the calcium-phosphorous ratio (Ca:P), quantitative analysis of crystalline phases, and functional groups, respectively. Thermogravimetric analysis (TGA) was used to quantify the weight percent of water, organic components, carbonate and mineral in the SBM colloidal gel. Flexural strength of SBM discs sintered at 700°C were statistically analogous to β-TCP sintered at 900°C. The Ca:P ratio of the sintered SBM was found to be 1.47 ± 0.04, statistically different from β-TCP sintered at higher temperatures. The carbonate content of the SBM was determined to be ~2.8% ± 0.9. The novel SBM colloidal gel has hence been characterized chemically and physically for its potential use in 3D printing grafts to repair critical sized bone defects.
SCOPUS:85149603668
ISSN: 2666-9641
CID: 5457282

Osseodensification Versus Subtractive Drilling Techniques in Bone Healing and Implant Osseointegration: Ex Vivo Histomorphologic/Histomorphometric Analysis in a Low-Density Bone Ovine Model

Mullings, Otto; Tovar, Nick; Abreu de Bortoli, João Paulo; Parra, Marcelo; Torroni, Andrea; Coelho, Paulo G; Witek, Lukasz
PURPOSE/OBJECTIVE:The aim of this study was to qualitatively and quantitatively assess the effect of osteotomy preparation by conventional, subtractive, or osseodensification instrumentation on osteotomies, treated with or without endosteal implants, and healing capacity. MATERIALS AND METHODS/METHODS:Seven sheep were used, and 56 osteotomies were made in the left and right ilium of the sheep (n = 8/sheep [4 per side/time point (3 and 6 weeks)]). Two different instrumentation techniques were used: (1) conventional/regular drilling in a three-step series of a 2-mm pilot and 3.2-mm and 3.8-mm twist drills and (2) osseodensification drilling with a Densah Bur 2.0-mm pilot and 2.8-mm and 3.8-mm multi-fluted tapered burs. Drilling was performed at 1,100 rpm with saline irrigation. RESULTS:Qualitative histomorphometric evaluation of the osteotomies after 3 and 6 weeks did not indicate any healing impairment due to the instrumentation. In all samples, histologic examination suggested bone remodeling and growth (empty and treated with an implant), irrespective of preparation technique. Osteotomies prepared using the osseodensification instrumentation showed the existence of bone chips autografted into the trabecular spaces along the length of the osteotomy wall. CONCLUSION/CONCLUSIONS:The osseodensification group yielded higher osseointegration rates, as distinguished through qualitative assessment, bone-to-implant contact, and bone-area-fraction occupancy, indicating an increased osteogenic potential in osteotomies prepared using the osseodensification technique.
PMID: 34698715
ISSN: 1942-4434
CID: 5072102

Osseodensification drilling vs conventional manual instrumentation technique for posterior lumbar fixation: Ex-vivo mechanical and histomorphological analysis in an ovine model

Torroni, Andrea; Lima Parente, Paulo Eduardo; Witek, Lukasz; Hacquebord, Jacques Henri; Coelho, Paulo G
Lumbar fusion is a procedure associated with several indications, but screw failure remains a major complication, with an incidence ranging 10% to 50%. Several solutions have been proposed, ranging from more efficient screw geometry to enhance bone quality, conversely, drilling instrumentation have not been thoroughly explored. The conventional instrumentation (regular [R]) techniques render the bony spicules excavated impractical, while additive techniques (osseodensification [OD]) compact them against the osteotomy walls and predispose them as nucleating surfaces/sites for new bone. This work presents a case-controlled split model for in vivo/ex vivo comparison of R vs OD osteotomy instrumentation in posterior lumbar fixation in an ovine model to determine feasibility and potential advantages of the OD drilling technique in terms of mechanical and histomorphology outcomes. Eight pedicle screws measuring 4.5 mm × 45 mm were installed in each lumbar spine of eight adult sheep (four per side). The left side underwent R instrumentation, while the right underwent OD drilling. The animals were killed at 6- and 12-week and the vertebrae removed. Pullout strength and non-decalcified histologic analysis were performed. Significant mechanical stability differences were observed between OD and R groups at 6- (387 N vs 292 N) and 12-week (312 N vs 212 N) time points. Morphometric analysis did not detect significant differences in bone area fraction occupancy between R and OD groups, while it is to note that OD showed increased presence of bone spiculae. Mechanical pullout testing demonstrated that OD drilling provided higher degrees of implant anchoring as a function of time, whereas a significant reduction was observed for the R group.
PMID: 32369220
ISSN: 1554-527x
CID: 4439042

Three-Dimensionally-Printed Bioactive Ceramic Scaffolds: Construct Effects on Bone Regeneration

Fama, Christopher; Kaye, Gabriel J; Flores, Roberto; Lopez, Christopher D; Bekisz, Jonathan M; Torroni, Andrea; Tovar, Nick; Coelho, Paulo G; Witek, Lukasz
BACKGROUND/PURPOSE/OBJECTIVE:The utilization of three-dimensionally (3D)-printed bioceramic scaffolds composed of beta-tricalcium phosphate in conjunction with dipyridamole have shown to be effective in the osteogenesis of critical bone defects in both skeletally immature and mature animals. Furthermore, previous studies have proven the dura and pericranium's osteogenic capacity in the presence of 3D-printed scaffolds; however, the effect galea aponeurotica on osteogenesis in the presence of 3D scaffolds remains unclear. METHOD/DESCRIPTION/UNASSIGNED:Critical-sized (11 mm) bilateral calvarial defects were created in 35-day old rabbits (n = 7). Two different 3D scaffolds were created, with one side of the calvaria being treated with a solid nonporous cap and the other with a fully porous cap. The solid cap feature was designed with the intention of preventing communication of the galea and the ossification site, while the porous cap permitted such communication. The rabbits were euthanized 8 weeks postoperatively. Calvaria were analyzed using microcomputed tomography, 3D reconstruction, and nondecalcified histologic sectioning in order assess differences in bone growth between the two types of scaffolding. RESULTS:Scaffolds with the solid (nonporous) cap yielded greater percent bone volume (P = 0.012) as well as a greater percent potential bone (P = 0.001) compared with the scaffolds with a porous cap. The scaffolds with porous caps also exhibited a greater percent volume of soft tissue (P < 0.001) presence. There were no statistically significant differences detected in scaffold volume. CONCLUSION/CONCLUSIONS:A physical barrier preventing the interaction of the galea aponeurotica with the scaffold leads to significantly increased calvarial bone regeneration in comparison with the scaffolds allowing for this interaction. The galea's interaction also leads to more soft tissue growth hindering the in growth of bone in the porous-cap scaffolds.
PMID: 33003153
ISSN: 1536-3732
CID: 5050092

Effect of Surgical Instrumentation Variables on the Osseointegration of Narrow- and Wide-Diameter Short Implants

Witek, Lukasz; Parra, Marcelo; Tovar, Nick; Alifarag, Adham; Lopez, Christopher D; Torroni, Andrea; Bonfante, Estevam A; Coelho, Paulo G
PURPOSE/OBJECTIVE:The aim of the present study was to systematically analyze how a multifactorial surgical instrumentation approach affects osseointegration on both narrow-diameter and wide-diameter short implants. MATERIALS AND METHODS/METHODS:Twelve skeletally mature female sheep were used in the study along with 144 plateau-root-form healing chamber titanium (Ti-6Al-4V) implants (Bicon LLC, Boston, MA), evenly distributed between narrow (3.5 mm) and wide (6.0 mm) diameters. The presence or the absence of irrigation, different drilling speeds, and 2 time points quantifying bone-implant contact (BIC) and bone area fraction occupancy (BAFO) to evaluate the osteogenic parameters around the implants. RESULTS:There were no signs of inflammation, infection, or failure of the implants observed at either healing period. The narrow 3.5-mm implant, at 6 weeks, yielded significant differences in terms of BIC at a drilling speed of 50 rotations per minute (RPM), with higher values of the samples using irrigation (30.6 ± 6.1%) compared with those without (19.7 ± 6.1%). No statistical differences were detected for 500 and 1,000 RPM with or without irrigation. The wide 6-mm diameter implant showed differences with respect to drilling speed, 500 and 1,000 RPM, with higher values associated with samples subjected to irrigation. BAFO results, for both diameters, only detected statistical differences between the 2 times (3 vs 6 weeks); no statistical differences were detected when evaluating as a function of time, drilling speed, and irrigation. CONCLUSIONS:Surgical instrumentation variables (ie, drilling speed [RPM] and irrigation) yielded to be more of an effect for BIC at longer healing time (6 weeks) for the wider implants. Furthermore, deploying narrow or wide plateau-root-form implants, where conditions allow, has shown to be a safe alternative, considering the high BIC and BAFO values observed, independent of irrigation.
PMID: 33137302
ISSN: 1531-5053
CID: 4759432