Try a new search

Format these results:

Searched for:

person:lw901

Total Results:

221


Assessment of a chair-side argon-based non-thermal plasma treatment on the surface characteristics and integration of dental implants with textured surfaces

Teixeira, Hellen S; Marin, Charles; Witek, Lukasz; Freitas, Amilcar Jr; Silva, Nelson R F; Lilin, Thomas; Tovar, Nick; Janal, Malvin N; Coelho, Paulo G
The biomechanical effects of a non-thermal plasma (NTP) treatment, suitable for use in a dental office, on the surface character and integration of a textured dental implant surface in a beagle dog model were evaluated. The experiment compared a control treatment, which presented an alumina-blasted/acid-etched (AB/AE) surface, to two experimental treatments, in which the same AB/AE surface also received NTP treatment for a period of 20 or 60 s per implant quadrant (PLASMA 20' and PLASMA 60' groups, respectively). The surface of each specimen was characterized by electron microscopy and optical interferometry, and surface energy and surface chemistry were determined prior to and after plasma treatment. Two implants of each type were then placed at six bilateral locations in 6 dogs, and allowed to heal for 2 or 4 weeks. Following sacrifice, removal torque was evaluated as a function of animal, implant surface and time in vivo in a mixed model ANOVA. Compared to the CONTROL group, PLASMA 20' and 60' groups presented substantially higher surface energy levels, lower amounts of adsorbed C species and significantly higher torque levels (p=.001). Result indicated that the NTP treatment increased the surface energy and the biomechanical fixation of textured-surface dental implants at early times in vivo.
PMID: 22498282
ISSN: 1878-0180
CID: 164450

Effect of Si addition on Ca- and P-impregnated implant surfaces with nanometer-scale roughness: an experimental study in dogs

Coelho, PG; Granato, R; Marin, C; Jimbo, R; Lin, S; Witek, L; Suzuki, M; Bonfante, EA
Objectives: To investigate the effect of Si addition on a nanometer-scale roughness Ca and P implant surfaces in a canine tibia model by biomechanical and histomorphometric evaluations. Material and methods: The implant surfaces comprised a resorbable media CaP microblasted (control) and a CaP resorbable media+silica-boost microblasted (experimental) surfaces. Surfaces were characterized by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and optical interferometry (IFM) down to the nanometric level. The animal model involved the bilateral placement of control (n=24) and experimental surface (n=24) implants along the proximal tibiae of six dogs, remaining in vivo for 2 or 4 weeks. After euthanization, half of the specimens were torqued-to-interface failure, and the other half was subjected to histomorphologic and bone-to-implant contact (BIC) evaluation. Torque and BIC statistical evaluation was performed by the Friedman test at 95% level of significance, and comparisons between groups was performed by the Dunn test. Results: IFM and SEM observations depicted comparable roughness parameters for both implant surfaces on the micrometer and nanometer scales. XPS analysis revealed similar chemical composition, except for the addition of Si on the experimental group. Torque-to-interface failure and BIC mean values showed no significant differences (P=0.25 and 0.51, respectively) at both 2- and 4-week evaluation points for experimental and control groups. Early bone healing histomorphologic events were similar between groups. Conclusions: The experimental surface resulted in not significantly different biomechanical fixation and BIC relative to control. Both surfaces were biocompatible and osseoconductive. To cite this article: Coelho PG, Granato R, Marin C, Jimbo R, Lin S, Witek L, Suzuki M, Bonfante EA. Effect of Si addition on Ca- and P-impregnated implant surfaces with nanometer-scale roughness: an experimental study in dogs. Clin. Oral Impl. Res. 23, 2012; 373-378. doi: 10.1111/j.1600-0501.2010.02150.x.
PMID: 21435014
ISSN: 0905-7161
CID: 160237

Effect of drilling dimension on implant placement torque and early osseointegration stages: an experimental study in dogs

Campos, Felipe E; Gomes, Julio B; Marin, Charles; Teixeira, Hellen S; Suzuki, Marcelo; Witek, Lukasz; Zanetta-Barbosa, Darceny; Coelho, Paulo G
PURPOSE: Primary stability has been regarded as a key factor to ensure uneventful osseointegration of dental implants. Such stability is often achieved by placing implants in undersized drilled bone. The present study evaluated the effect of drilling dimensions in insertion torque and early implant osseointegration stages in a beagle dog model. MATERIALS AND METHODS: Six beagle dogs were acquired and subjected to bilateral surgeries in the radii 1 and 3 weeks before death. During surgery, 3 implants, 4 mm in diameter by 10 mm in length, were placed in bone sites drilled to 3.2 mm, 3.5 mm, and 3.8 mm in diameter. The insertion torque was recorded for all samples. After death, the implants in bone were nondecalcified processed and morphologically and morphometrically (bone-to-implant contact and bone area fraction occupancy) evaluated. Statistical analyses were performed using the Kruskal-Wallis test followed by Dunn's post hoc test for multiple comparisons at the 95% level of significance. RESULTS: The insertion torque levels obtained were inversely proportional to the drilling dimension, with a significant difference detected between the 3.2-mm and 3.8-mm groups (P = .003). Despite a significant increase in the bone-to-implant contact over time in vivo for all groups (P = .007), no effect for the drilling dimension was observed. Additionally, no effect of the drilling dimension and time was observed for the bone area fraction occupancy parameter (P = .31). The initial healing pathways differed between implants placed in bone drilled to different dimensions. CONCLUSIONS: Although different degrees of torque were observed with different drilling dimensions and these resulted in different healing patterns, no differences in the histometrically evaluated parameters were observed.
PMID: 22182660
ISSN: 0278-2391
CID: 160697

Bone Morphometric Evaluation around Immediately Placed Implants Covered with Porcine-Derived Pericardium Membrane: An Experimental Study in Dogs

Jimbo, Ryo; Marin, Charles; Witek, Lukasz; Suzuki, Marcelo; Tovar, Nick; Chesnoiu-Matei, Ioana; Dragan, Irina Florentina; Coelho, Paulo G
Objective. To investigate whether porcine-derived bioresorbable pericardium membrane coverage enhances the osseointegration around implants placed in fresh extraction sockets. Study Design. Twenty-four commercially available endosseous implants were placed in the fresh extraction sockets of the mandibular first molar of mature beagles (n = 6). On one side, implants and osteotomy sites were covered with porcine-derived bioresorbable pericardium membranes, whereas on the other side, no membranes were used. After 6 weeks, samples were retrieved and were histologically processed for histomorphometric analysis. Results. The histological observation showed that bone loss and soft tissue migration in the coronal region of the implant were evident for the control group, whereas bone fill was evident up to the neck of the implant for the membrane-covered group. Bone-to-implant contact was significantly higher for the membrane-covered group compared to the control group, 75% and 45% (P < 0.02), respectively. Conclusion. The experimental membranes proved to regenerate bone around implants placed in fresh extraction sockets without soft tissue intrusion.
PMCID:3512292
PMID: 23227052
ISSN: 1687-8787
CID: 461912

Physicochemical Characterization and In Vivo Evaluation of Amorphous and Partially Crystalline Calcium Phosphate Coatings Fabricated on Ti-6Al-4V Implants by the Plasma Spray Method

Bonfante, Estevam A; Witek, Lukasz; Tovar, Nick; Suzuki, Marcelo; Marin, Charles; Granato, Rodrigo; Coelho, Paulo G
Objective. To characterize the topographic and chemical properties of 2 bioceramic coated plateau root form implant surfaces and evaluate their histomorphometric differences at 6 and 12 weeks in vivo. Methods. Plasma sprayed hydroxyapatite (PSHA) and amorphous calcium phosphate (ACP) surfaces were characterized by scanning electron microscopy (SEM), interferometry (IFM), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FT-IR). Implants were placed in the radius epiphysis, and the right limb of dogs provided implants that remained for 6 weeks, and the left limb provided implants that remained 12 weeks in vivo. Thin sections were prepared for bone-to-implant contact (BIC) and bone-area-fraction occupancy (BAFO) measurements (evaluated by Friedman analysis P < 0.05). Results. Significantly, higher S(a) (P < 0.03) and S(q) (P < 0.02) were observed for ACP relative to PSHA. Chemical analysis revealed significantly higher HA, calcium phosphate, and calcium pyrophosphate for the PSHA surface. BIC and BAFO measurements showed no differences between surfaces. Lamellar bone formation in close contact with implant surfaces and within the healing chambers was observed for both groups. Conclusion. Given topographical and chemical differences between PSHA and ACP surfaces, bone morphology and histomorphometric evaluated parameters showed that both surfaces were osseoconductive in plateau root form implants.
PMCID:3434399
PMID: 22969806
ISSN: 1687-8787
CID: 461932

Interval cranioplasty: comparison of current standards

Sultan, Steven M; Davidson, Edward H; Butala, Parag; Schachar, Jeffrey S; Witek, Lukasz; Szpalski, Caroline; Ricci, Jack L; Saadeh, Pierre B; Warren, Stephen M
BACKGROUND: Although different cranioplasty storage methods are currently in use, no study has prospectively compared these methods. The authors compare freezing and subcutaneous storage methods in a rat model. METHODS: Trephine defects (10 mm) were created in 45 Sprague-Dawley rats. The cranial bone grafts were stored in an autologous subcutaneous pocket (n = 15), frozen at -80 degrees C (n = 15), immediately analyzed (n = 12), or immediately replanted into the defect (n = 3). After 10 days of storage, the subcutaneous or frozen grafts were either replanted (subcutaneous, n = 3; frozen, n = 3) or analyzed (subcutaneous, n = 12; frozen, n = 12). Grafts underwent histologic analysis, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, alkaline phosphatase assay, mechanical testing, and micro-computed tomographic imaging. RESULTS: After 10 days of storage, physiologic assays demonstrated a significant decrease in cellular functionality (e.g., alkaline phosphatase assay concentration: fresh, 18.8 +/- 0.77 mM/mg; subcutaneous, 12.2 +/- 0.63 mM/mg; frozen, 8.07 +/- 1.1 mM/mg; p < 0.012 for all comparisons). Mechanical integrity (maximal load) of fresh grafts was greatest (fresh, 9.26 +/- 0.29 N; subcutaneous, 6.27 +/- 0.64 N; frozen, 4.65 +/- 0.29 N; fresh compared with frozen, p < 0.001; fresh compared with subcutaneous, p = 0.006). Replantation of subcutaneously stored and frozen grafts resulted in limited bony union and considerable resorption after 12 weeks; in contrast, replanted fresh grafts demonstrated bony union and little resorption. CONCLUSIONS: Current preservation methods for interval cranioplasty do not maintain bone graft viability. Subcutaneous storage appears to provide a small advantage compared with freezing.
PMID: 21532415
ISSN: 1529-4242
CID: 156286

Characterization of five different implant surfaces and their effect on osseointegration: a study in dogs

Coelho, Paulo G; Bonfante, Estevam A; Pessoa, Roberto S; Marin, Charles; Granato, Rodrigo; Giro, Gabriela; Witek, Lukasz; Suzuki, Marcelo
BACKGROUND: Chemical modification of implant surface is typically associated with surface topographic alterations that may affect early osseointegration. This study investigates the effects of controlled surface alterations in early osseointegration in an animal model. METHODS: Five implant surfaces were evaluated: 1) alumina-blasting, 2) biologic blasting, 3) plasma, 4) microblasted resorbable blasting media (microblasted RBM), and 5) alumina-blasting/acid-etched (AB/AE). Surface topography was characterized by scanning electron microscopy and optical interferometry, and chemical assessment by x-ray photoelectron spectroscopy. The implants were placed in the radius of six dogs, remaining 2 and 4 weeks in vivo. After euthanization, specimens were torqued-to-interface failure and non-decalcified-processed for histomorphologic bone-implant contact, and bone area fraction-occupied evaluation. Statistical evaluation was performed by one-way analysis of variance (P <0.05) and post hoc testing by the Tukey test. RESULTS: The alumina-blasting surface presented the highest average surface roughness and mean root square of the surface values, the biologic blasting the lowest, and AB/AE an intermediate value. The remaining surfaces presented intermediate values between the biologic blasting and AB/AE. The x-ray photoelectron spectroscopy spectra revealed calcium and phosphorus for the biologic blasting and microblasted RBM surfaces, and the highest oxygen levels for the plasma, microblasted RBM, and AB/AE surfaces. Significantly higher torque was observed at 2 weeks for the microblasted RBM surface (P <0.04), but no differences existed between surfaces at 4 weeks (P >0.74). No significant differences in bone-implant contact and bone area fraction-occupied values were observed at 2 and 4 weeks. CONCLUSION: The five surfaces were osteoconductive and resulted in high degrees of osseointegration and biomechanical fixation.
PMID: 21054223
ISSN: 0022-3492
CID: 160708

Additive CAD/CAM Process for Dental Prostheses

Silva NR; Witek L; Coelho PG; Thompson VP; Rekow ED; Smay J
Abstract This article describes the evolution of a computer-aided design/computer-aided manufacturing (CAD/CAM) process where ceramic paste is deposited in a layer-by-layer sequence using a computer numerical control machine to build up core and fixed partial denture (FPD) structures (robocasting). Al(2)O(3) (alumina) or ZrO(2) (Y-TZP) are blended into a 0.8% aqueous solution of ammonium polyacrylate in a ratio of approximately 1:1 solid:liquid. A viscosifying agent, hydroxypropyl methylcellulose, is added to a concentration of 1% in the liquid phase, and then a counter polyelectrolyte is added to gel the slurry. There are two methods for robocasting crown structures (cores or FPD framework). One is for the core to be printed using zirconia ink without support materials, in which the stereolithography (STL) file is inverted (occlusal surface resting on a flat substrate) and built. The second method uses a fugitive material composed of carbon black codeposited with the ceramic material. During the sintering process, the carbon black is removed. There are two key challenges to successful printing of ceramic crowns by the robocasting technique. First is the development of suitable materials for printing, and second is the design of printing patterns for assembly of the complex geometry required for a dental restoration. Robocasting has room for improvement. Current development involves enhancing the automation of nozzle alignment for accurate support material deposition and better fidelity of the occlusal surface. An accompanying effort involves calculation of optimal support structures to yield the best geometric results and minimal material usage
PMID: 20561158
ISSN: 1532-849x
CID: 155129

Characterization of HA/βTCP 3-D printed scaffolds for custom bone repair applications

Chapter by: Witek, L.; Murriky, A.; Clark, E.; Smay, J.; Pines, M.; Silva, N.; Ricci, J. L.
in: Proceedings of the 2010 IEEE 36th Annual Northeast Bioengineering Conference, NEBEC 2010 by
[S.l.] : Elsevier Inc., 2010
pp. ?-?
ISBN: 9781424468799
CID: 2866502

Is lacunocanalicular flow the transducer of mechanical tension stress to osteogenesis in distraction? [Meeting Abstract]

Davidson, Edward H; Sultan, Steven M; Butala, Parag; Knobel, Denis; Tutela, John Paul; Canizares, Orlando; Wagner, IJanelle; Witek, Lukasz; Hu, Bin; Warren, Stephen M
ISI:000281708600185
ISSN: 1072-7515
CID: 2162652