Try a new search

Format these results:

Searched for:

person:yangs08

Total Results:

128


Receptor for advanced glycation end product (RAGE)-dependent modulation of early growth response-1 in hepatic ischemia/reperfusion injury

Zeng, Shan; Dun, Hao; Ippagunta, Nikalesh; Rosario, Rosa; Zhang, Qing Y; Lefkowitch, Jay; Yan, Shi F; Schmidt, Ann Marie; Emond, Jean C
BACKGROUND/AIMS: We previously showed that blockade of RAGE significantly attenuates hepatic ischemia/reperfusion (I/R) injury in mice. Here, we identify that early growth response-1 (Egr-1) is a downstream target of RAGE in hepatic I/R injury. METHODS: Hepatic I/R was induced in male mice. Liver remnants were analyzed for induction of Egr-1 and cytokines, as well as regulation of apoptotic pathways after reperfusion. RESULTS: Egr-1 was upregulated in the liver remnants after hepatic I/R injury and was suppressed by administration of soluble RAGE or deletion of the RAGE gene. RAGE-mediated increased expression of Egr-1 upregulates a central downstream gene, MIP2. In contrast, RAGE-stimulated Egr-1-independent pathways regulate TNF-alpha production and apoptosis in response to I/R. Consistent with these findings, phospho-p44/42 and phospho-JNK MAPK and c-Jun were strikingly suppressed in RAGE(-/-) versus WT mice, but not in Egr-1(-/-) mice. RAGE ligand HMGB1 was upregulated after I/R in the liver remnants. In vitro, incubation of RAGE-expressing liver dendritic cells (DCs) with recombinant HMGB-1 resulted in increased Egr-1 transcripts, in a manner suppressed by RAGE gene deletion, soluble RAGE and inhibitors of p44/p42 or JNK MAP kinase. CONCLUSIONS: Suppression of Egr-1 may contribute to the protective mechanisms underlying the beneficial impact of RAGE blockade or deletion
PMID: 19303658
ISSN: 0168-8278
CID: 140646

Mice deficient in PKCbeta and apolipoprotein E display decreased atherosclerosis

Harja, Evis; Chang, Jong Sun; Lu, Yan; Leitges, Michael; Zou, Yu Shan; Schmidt, Ann Marie; Yan, Shi-Fang
Endothelial activation is a central initiating event in atheroma formation. Evidence from our laboratory and others has demonstrated links between activation of early growth response-1 (Egr-1) and atherosclerosis and also has demonstrated that activated protein kinase C (PKC) betaII is a critical upstream regulator of Egr-1 in response to vascular stress. We tested the role of PKCbeta in regulating key events linked to atherosclerosis and show that the aortas of apoE(-/-) mice display an age-dependent increase in PKCbetaII antigen in membranous fractions vs. C57BL/6 animals with a approximately 2-fold increase at age 6 wk and a approximately 4.5-fold increase at age 24 wk. Consistent with important roles for PKCbeta in atherosclerosis, a significant decrease in atherosclerotic lesion area was evident in PKCbeta(-/-)/apoE(-/-) vs. apoE(-/-) mice by approximately 5-fold, in parallel with significantly reduced vascular transcripts for Egr-1 and matrix metalloproteinase (MMP)-2 antigen and activity vs. apoE(-/-) mice. Significant reduction in atherosclerosis of approximately 2-fold was observed in apoE(-/-) mice fed ruboxistaurin chow (PKCbeta inhibitor) vs. vehicle. In primary murine and human aortic endothelial cells, the PKCbeta-JNK mitogen-activated protein kinase pathway importantly contributes to oxLDL-mediated induction of MMP2 expression. Blockade of PKCbeta may be beneficial in mitigating endothelial perturbation and atherosclerosis
PMCID:2660644
PMID: 19036858
ISSN: 1530-6860
CID: 140591

The receptor for advanced glycation endproducts (RAGE) and cardiovascular disease

Yan, Shi Fang; Ramasamy, Ravichandran; Schmidt, Ann Marie
Recent and compelling investigation has expanded our view of the biological settings in which the products of nonenzymatic glycation and oxidation of proteins and lipids - the advanced glycation endproducts (AGEs) - form and accumulate. Beyond diabetes, natural ageing and renal failure, AGEs form in inflammation, oxidative stress and in ischaemia-reperfusion. The chief signal transduction receptor for AGEs - the receptor for AGEs (RAGE) - is a multiligand-binding member of the immunoglobulin superfamily. In addition to AGEs, RAGE binds certain members of the S100/calgranulin family, high-mobility group box 1 (HMGB1), and beta-amyloid peptide and beta-sheet fibrils. Recent studies demonstrate beneficial effects of RAGE antagonism and genetic deletion in rodent models of atherosclerosis and ischaemia-reperfusion injury in the heart and great vessels. Experimental evidence is accruing that RAGE ligand generation and release during ischaemia-reperfusion may signal through RAGE, thus suggesting that antagonism of this receptor might provide a novel form of therapeutic intervention in heart disease. However, it is plausible that innate, tissue-regenerative roles for these RAGE ligands may also impact the failing heart - perhaps through RAGE and/or distinct receptors. In this review, we focus on RAGE and the consequences of its activation in the cardiovasculature
PMCID:2670065
PMID: 19278572
ISSN: 1462-3994
CID: 130811

Receptor for AGE (RAGE) and its ligands-cast into leading roles in diabetes and the inflammatory response

Yan, Shi Fang; Ramasamy, Ravichandran; Schmidt, Ann Marie
The actors in the pathogenesis of diabetes and its complications are many and multifaceted. The effects of elevated levels of glucose are myriad; among these is the generation of advanced glycation end products (AGEs), the products of nonenzymatic glycoxidation of proteins and lipids. The finding that AGEs stimulate signal transduction cascades through the multiligand receptor RAGE unveiled novel insights into diabetes and its complications. Inextricably woven into AGE-RAGE interactions in diabetes is the engagement of the innate and adaptive immune responses. Although glucose may be the triggering stimulus to draw RAGE into diabetes pathology, consequent cellular stress results in release of proinflammatory RAGE ligands S100/calgranulins and HMGB1. We predict that once RAGE is engaged in the diabetic tissue, a vicious cycle of ligand-RAGE perturbation ensues, leading to chronic tissue injury and suppression of repair mechanisms. Targeting RAGE may be a beneficial strategy in diabetes, its complications, and untoward inflammatory responses
PMCID:2659764
PMID: 19189073
ISSN: 1432-1440
CID: 130812

Neuronal RAGE expression modulates severity of injury following transient focal cerebral ischemia

Hassid, Benjamin G; Nair, M Nathan; Ducruet, Andrew F; Otten, Marc L; Komotar, Ricardo J; Pinsky, David J; Schmidt, Ann Marie; Yan, Shi Fang; Connolly, E Sander
Inflammation has a significant role in the neurological injury that follows stroke. The receptor for advanced-glycation end products (RAGE) is a multiligand member of the immunoglobulin superfamily that has been implicated in multiple neuronal and inflammatory stress processes. To directly test the role of neuronal RAGE in stroke, we employed two cohorts of transgenic mice, one over-expressing full-length functional human RAGE in neurons, and the other a human RAGE transgene in which deletion of the cytoplasmic domain of the receptor in neurons suppresses signal transduction stimulated by ligands (referred to as dominant negative or DN-RAGE). We found a statistically significant increase in stroke volume in the RAGE over-expressing cohort compared to normal controls, and a trend towards decreased stroke volume in the DN RAGE cohort. These results indicate that RAGE signaling directly contributes to pathology in cerebral ischemia
PMID: 19071026
ISSN: 0967-5868
CID: 140592

Tempering the wrath of RAGE: an emerging therapeutic strategy against diabetic complications, neurodegeneration, and inflammation

Yan, Shi Fang; Yan, Shi Du; Ramasamy, Ravichandran; Schmidt, Ann Marie
The multiligand receptor RAGE (receptor for advanced glycation end-products) is emerging as a central mediator in the immune/inflammatory response. Epidemiological evidence accruing in the human suggests upregulation of RAGE's ligands (AGEs, S100/calgranulins, high mobility group box-1 (HMGB1), and amyloid beta-peptide and beta-sheet fibrils) and the receptor itself at sites of inflammation and in chronic diseases such as diabetes and neurodegeneration. The consequences of ligand-RAGE interaction include upregulation of molecules implicated in inflammatory responses and tissue damage, such as cytokines, adhesion molecules, and matrix metalloproteinases. In this review, we discuss the localization of RAGE and its ligand families and the biological impact of this axis in multiple cell types implicated in chronic diseases. Lastly, we consider findings from animal model studies suggesting that although tissue-damaging effects ensue from recruitment of the ligand-RAGE interaction, in distinct settings, adaptive and repair/regeneration outcomes appear to override detrimental effects of RAGE. As RAGE blockade moves further into clinical development, clarifying the biology of RAGE garners ever-increasing importance
PMCID:2932796
PMID: 19322705
ISSN: 1365-2060
CID: 130813

RAGE and modulation of ischemic injury in the diabetic myocardium

Bucciarelli, Loredana G; Ananthakrishnan, Radha; Hwang, Yuying C; Kaneko, Michiyo; Song, Fei; Sell, David R; Strauch, Christopher; Monnier, Vincent M; Yan, Shi Fang; Schmidt, Ann Marie; Ramasamy, Ravichandran
OBJECTIVE: Subjects with diabetes experience an increased risk of myocardial infarction and cardiac failure compared with nondiabetic age-matched individuals. The receptor for advanced glycation end products (RAGE) is upregulated in diabetic tissues. In this study, we tested the hypothesis that RAGE affected ischemia/reperfusion (I/R) injury in the diabetic myocardium. In diabetic rat hearts, expression of RAGE and its ligands was enhanced and localized particularly to both endothelial cells and mononuclear phagocytes. RESEARCH DESIGN AND METHODS: To specifically dissect the impact of RAGE, homozygous RAGE-null mice and transgenic (Tg) mice expressing cytoplasmic domain-deleted RAGE (DN RAGE), in which RAGE-dependent signal transduction was deficient in endothelial cells or mononuclear phagocytes, were rendered diabetic with streptozotocin. Isolated perfused hearts were subjected to I/R. RESULTS: Diabetic RAGE-null mice were significantly protected from the adverse impact of I/R injury in the heart, as indicated by decreased release of LDH and lower glycoxidation products carboxymethyl-lysine (CML) and pentosidine, improved functional recovery, and increased ATP. In diabetic Tg mice expressing DN RAGE in endothelial cells or mononuclear phagocytes, markers of ischemic injury and CML were significantly reduced, and levels of ATP were increased in heart tissue compared with littermate diabetic controls. Furthermore, key markers of apoptosis, caspase-3 activity and cytochrome c release, were reduced in the hearts of diabetic RAGE-modified mice compared with wild-type diabetic littermates in I/R. CONCLUSIONS: These findings demonstrate novel and key roles for RAGE in I/R injury in the diabetic heart
PMCID:2453611
PMID: 18420491
ISSN: 1939-327x
CID: 130800

Stopping the primal RAGE reaction in myocardial infarction: capturing adaptive responses to heal the heart? [Editorial]

Ramasamy, Ravichandran; Yan, Shi Fang; Schmidt, Ann Marie
PMCID:2703709
PMID: 18574057
ISSN: 1524-4539
CID: 130815

Mechanisms of disease: advanced glycation end-products and their receptor in inflammation and diabetes complications

Yan, Shi Fang; Ramasamy, Ravichandran; Schmidt, Ann Marie
Many important biochemical mechanisms are activated in the presence of high levels of glucose, which occur in diabetes. Elevated levels of glucose accelerate the formation of advanced glycation end-products (AGEs). Via their chief signaling receptor-the AGE-specific receptor (commonly abbreviated as RAGE)-AGEs generate reactive oxygen species and activate inflammatory signaling cascades. Consequently, AGEs have key roles in the pathogenesis of diabetic complications. Two discoveries have advanced our knowledge of the roles of RAGE in inflammation. First, this receptor has multiple ligands and binds not only AGEs but also proinflammatory, calcium-binding S100 proteins (also known as calgranulins) and nuclear high mobility group protein box-1. Second, RAGE is expressed on T lymphocytes, monocytes and macrophages; RAGE expression on T lymphocytes is essential for effective priming of immune responses in vivo. In this Review, we chronicle roles for RAGE in the pathogenesis of diabetic complications and develop the hypothesis that, in addition to RAGE's central role in the inflammatory response, it is critically linked to the pathogenesis of types 1 and 2 diabetes
PMID: 18332897
ISSN: 1745-8374
CID: 130817

RAGE mediates podocyte injury in adriamycin-induced glomerulosclerosis

Guo, Jiancheng; Ananthakrishnan, Radha; Qu, Wu; Lu, Yan; Reiniger, Nina; Zeng, Shan; Ma, Wanchao; Rosario, Rosa; Yan, Shi Fang; Ramasamy, Ravichandran; D'Agati, Vivette; Schmidt, Ann Marie
In the kidney, the receptor for advanced glycation end products (RAGE) is principally expressed in the podocyte at low levels, but is upregulated in both human and mouse glomerular diseases. Because podocyte injury is central to proteinuric states, such as the nephrotic syndrome, the murine adriamycin nephrosis model was used to explore the role of RAGE in podocyte damage. In this model, administration of the anthracycline antibiotic adriamycin provokes severe podocyte stress and glomerulosclerosis. In contrast to wild-type animals, adriamycin-treated RAGE-null mice were significantly protected from effacement of the podocyte foot processes, albuminuria, and glomerulosclerosis. Administration of adriamycin induced rapid generation of RAGE ligands, and treatment with soluble RAGE protected against podocyte injury and glomerulosclerosis. In vitro, incubation of RAGE-expressing murine podocytes with adriamycin stimulated AGE formation, and treatment with RAGE ligands rapidly activated nicotinamide adenine dinucleotide phosphate (NADPH)-oxidase, via p44/p42 MAP kinase signaling, and upregulated pro-fibrotic growth factors. These data suggest that RAGE may contribute to the pathogenesis of podocyte injury in sclerosing glomerulopathies such as focal segmental glomerulosclerosis
PMCID:2386730
PMID: 18256352
ISSN: 1533-3450
CID: 130816