Try a new search

Format these results:

Searched for:

person:yangs08

Total Results:

128


Methylglyoxal comes of AGE [Comment]

Ramasamy, Ravichandran; Yan, Shi Fang; Schmidt, Ann Marie
The posttranslational modification of proteins by methylglyoxal, a highly reactive compound derived from glycolysis, may contribute to aging, diabetes, and other disorders. In this issue of Cell, Brownlee and colleagues (Yao et al., 2006) demonstrate a specific mechanism by which methylglyoxal modifies a transcriptional corepressor to enhance gene expression
PMID: 16439200
ISSN: 0092-8674
CID: 130830

Diabetic vascular disease: it's all the RAGE

Hudson, Barry I; Wendt, Thoralf; Bucciarelli, Loredana G; Rong, Ling Ling; Naka, Yoshifumi; Yan, Shi Fang; Schmidt, Ann Marie
The major consequence of long-term diabetes is the increased incidence of disease of the vasculature. Of the underlying mechanisms leading to disease, the accumulation of advanced glycation end products (AGEs), resulting from the associated hyperglycemia, is the most convincing. Interaction of AGEs with their receptor, RAGE, activates numerous signaling pathways leading to activation of proinflammatory and procoagulatory genes. Studies in rodent models of macro- and microvascular disease have demonstrated that blockade of RAGE can prevent development of disease. These observations highlight RAGE as a therapeutic target for treatment of diabetic vascular disease
PMID: 16356122
ISSN: 1523-0864
CID: 140600

The RAGE axis and endothelial dysfunction: maladaptive roles in the diabetic vasculature and beyond

Ramasamy, Ravichandran; Yan, Shi Fang; Schmidt, Ann Marie
Receptor for advanced glycation end product (RAGE) is a member of the immunoglobulin superfamily of cell surface molecules. The ligand-RAGE axis is emerging as a central mechanism linked to vascular injury and atherosclerosis in diabetes and in euglycemia. The repertoire of RAGE ligands, including advanced glycation end products, S100/calgranulins, high-mobility group box 1, amyloid-beta peptide, and Mac-1, transcends RAGE biology from specifically the science of diabetic complications to central aspects of the inflammatory response and oxidative stress. Experiments in cell culture and in vivo support the notion that interaction of RAGE ligands with RAGE activates key signal transduction pathways that modulate fundamental cellular properties, thereby leading to vascular and inflammatory cell perturbation. These considerations support the premise that the ligand-RAGE axis may be an important target for therapeutic intervention in cardiovascular disease and, fundamentally, in initiation and amplification of inflammatory responses
PMID: 16226677
ISSN: 1050-1738
CID: 130831

The RAGE axis in early diabetic retinopathy

Barile, Gaetano R; Pachydaki, Sophia I; Tari, Samir R; Lee, Song E; Donmoyer, Christine M; Ma, Wanchao; Rong, Ling Ling; Buciarelli, Loredana G; Wendt, Thoralf; Horig, Heidi; Hudson, Barry I; Qu, Wu; Weinberg, Alan D; Yan, Shi Fang; Schmidt, Ann Marie
PURPOSE: The receptor for advanced glycation end products (AGEs) has been implicated in the pathogenesis of diabetic complications. This study was conducted to characterize the role of the RAGE axis in a murine model of nonproliferative diabetic retinopathy (NPDR). METHODS: The retinas of hyperglycemic, hyperlipidemic (HGHL, apolipoprotein E(-/-) db/db) mice were examined for the development of early retinal vascular lesions of NPDR and compared to littermates at 6 months of age. Neural function was assessed with electroretinography. Immunohistochemistry, real-time RT-PCR, autofluorescence, and ELISA studies were used to localize and quantify the AGE/RAGE axis. Soluble RAGE, a competitor of cellular RAGE for its ligands, was administered to assess the impact of RAGE blockade. RESULTS: Early inner retinal neuronal dysfunction, manifested by prolonged latencies of the oscillatory potentials and b-wave, was detected in hyperglycemic mice. HGHL mice exhibited accelerated development of acellular capillaries and pericyte ghosts compared with littermate control animals. AGEs were localized primarily to the vitreous cavity and internal limiting membrane (ILM) of the retina, where they were intimately associated with the footplates of RAGE-expressing Muller cells. AGE accumulation measured by ELISA was increased within the retinal extracellular matrix of hyperglycemic mice. AGE fluorescence and upregulation of RAGE transcripts was highest in the retinas of HGHL mice, and attenuation of the RAGE axis with soluble RAGE ameliorated neuronal dysfunction and reduced the development of capillary lesions in these mice. CONCLUSIONS: In early diabetic retinopathy, the RAGE axis, comprising the cellular receptor and its AGE ligands, is amplified within the retina and is accentuated along the vitreoretinal interface. Antagonism of the RAGE axis in NPDR reduces neurovascular perturbations, providing an important therapeutic target for intervention
PMID: 16043866
ISSN: 0146-0404
CID: 140601

Advanced glycation end products and RAGE: a common thread in aging, diabetes, neurodegeneration, and inflammation

Ramasamy, Ravichandran; Vannucci, Susan J; Yan, Shirley Shi Du; Herold, Kevan; Yan, Shi Fang; Schmidt, Ann Marie
The products of nonenzymatic glycation and oxidation of proteins and lipids, the advanced glycation end products (AGEs), accumulate in a wide variety of environments. AGEs may be generated rapidly or over long times stimulated by a range of distinct triggering mechanisms, thereby accounting for their roles in multiple settings and disease states. A critical property of AGEs is their ability to activate receptor for advanced glycation end products (RAGE), a signal transduction receptor of the immunoglobulin superfamily. It is our hypothesis that due to such interaction, AGEs impart a potent impact in tissues, stimulating processes linked to inflammation and its consequences. We hypothesize that AGEs cause perturbation in a diverse group of diseases, such as diabetes, inflammation, neurodegeneration, and aging. Thus, we propose that targeting this pathway may represent a logical step in the prevention/treatment of the sequelae of these disorders
PMID: 15764591
ISSN: 0959-6658
CID: 130832

Receptor for advanced glycation end products and its ligands: a journey from the complications of diabetes to its pathogenesis

Kim, William; Hudson, Barry I; Moser, Bernhard; Guo, Jiancheng; Rong, Ling Ling; Lu, Yan; Qu, Wu; Lalla, Evanthia; Lerner, Shulamit; Chen, Yali; Yan, Shirley Shi Du; D'Agati, Vivette; Naka, Yoshifumi; Ramasamy, Ravichandran; Herold, Kevan; Yan, Shi Fang; Schmidt, Ann Marie
Many studies have suggested that the expression of RAGE (receptor for advanced glycation end products) is upregulated in human tissues susceptible to the long-term complications of diabetes. From the kidneys to the macrovessels of the aorta, RAGE expression is upregulated in a diverse array of cell types, from glomerular epithelial cells (podocytes) to endothelial cells, vascular smooth muscle cells, and inflammatory mononuclear phagocytes and lymphocytes. Although RAGE was first described as a receptor for advanced glycation end products (AGEs), the key finding that RAGE was also a signaling receptor for proinflammatory S100/calgranulins and amphoterin, led to the premise that even in euglycemia, ligand-RAGE interaction propagated inflammatory mechanisms linked to chronic cellular perturbation and tissue injury. Indeed, such considerations suggested that RAGE might even participate in the pathogenesis of type 1 diabetes. Our studies have shown that pharmacological and/or genetic deletion/mutation of the receptor attenuates the development of hyperglycemia in NOD mice; in mice with myriad complications of diabetes, interruption of ligand-RAGE interaction prevents or delays the chronic complications of the disease in both macro- and microvessel structures. Taken together, these findings suggest that RAGE is 'at the right place and time' to contribute to the pathogenesis of diabetes and it complications. Studies are in progress to test the premise that antagonism of this interaction is a logical strategy for the prevention and treatment of diabetes
PMID: 16037278
ISSN: 0077-8923
CID: 130833

Aldose reductase and AGE-RAGE pathways: key players in myocardial ischemic injury

Kaneko, Michiyo; Bucciarelli, Loredana; Hwang, Yuying C; Lee, Larisee; Yan, Shi Fang; Schmidt, Ann Marie; Ramasamy, Ravichandran
Cardiovascular disease represents the major cause of morbidity and mortality in patients with diabetes mellitus. The impact of cardiac disease includes increased sensitivity of diabetic myocardium to ischemic episodes and diabetic cardiomyopathy, manifested as a subnormal functional response of the diabetic heart independent of coronary artery disease. In this context, we were to our knowledge the first to demonstrate that diabetes increases glucose flux via the first and key enzyme, aldose reductase, of the polyol pathway, resulting in impaired glycolysis under normoxic and ischemic conditions in diabetic myocardium. Our laboratory has been investigating the role of the polyol pathway in mediating myocardial ischemic injury in diabetics. Furthermore, the influence of the aldose reductase pathway in facilitating generation of key potent glycating compounds has led us to investigate the impact of advanced glycation end products (AGEs) in myocardial ischemic injury in diabetics. The potent impact of increased flux via the aldose reductase pathway and the increased AGE interactions with its receptor (RAGE) resulting in cardiac dysfunction will be discussed in this chapter
PMID: 16037296
ISSN: 0077-8923
CID: 130802

Central role of PKCbeta in neointimal expansion triggered by acute arterial injury

Andrassy, Martin; Belov, Dmitry; Harja, Evis; Zou, Yu Shan; Leitges, Michael; Katus, Hugo A; Nawroth, Peter P; Yan, Shi Du; Schmidt, Ann Marie; Yan, Shi-Fang
We tested the hypothesis that PKCbeta contributes to vascular smooth muscle cell (SMC) migration and proliferation; processes central to the pathogenesis of restenosis consequent to vascular injury. Homozygous PKCbeta null (-/-) mice or wild-type mice fed the PKCbeta inhibitor, ruboxistaurin, displayed significantly decreased neointimal expansion in response to acute femoral artery endothelial denudation injury compared with controls. In vivo and in vitro analyses demonstrated that PKCbetaII is critically linked to SMC activation, at least in part via regulation of ERK1/2 MAP kinase and early growth response-1. These data highlight novel roles for PKCbeta in the SMC response to acute arterial injury and suggest that blockade of PKCbeta may represent a therapeutic strategy to limit restenosis
PMID: 15662033
ISSN: 1524-4571
CID: 140602

RAGE limits regeneration after massive liver injury by coordinated suppression of TNF-alpha and NF-kappaB

Cataldegirmen, Guellue; Zeng, Shan; Feirt, Nikki; Ippagunta, Nikalesh; Dun, Hao; Qu, Wu; Lu, Yan; Rong, Ling Ling; Hofmann, Marion A; Kislinger, Thomas; Pachydaki, Sophia I; Jenkins, Daniel G; Weinberg, Alan; Lefkowitch, Jay; Rogiers, Xavier; Yan, Shi Fang; Schmidt, Ann Marie; Emond, Jean C
The exquisite ability of the liver to regenerate is finite. Identification of mechanisms that limit regeneration after massive injury holds the key to expanding the limits of liver transplantation and salvaging livers and hosts overwhelmed by carcinoma and toxic insults. Receptor for advanced glycation endproducts (RAGE) is up-regulated in liver remnants selectively after massive (85%) versus partial (70%) hepatectomy, principally in mononuclear phagocyte-derived dendritic cells (MPDDCs). Blockade of RAGE, using pharmacological antagonists or transgenic mice in which a signaling-deficient RAGE mutant is expressed in cells of mononuclear phagocyte lineage, significantly increases survival after massive liver resection. In the first hours after massive resection, remnants retrieved from RAGE-blocked mice displayed increased activated NF-kappaB, principally in hepatocytes, and enhanced expression of regeneration-promoting cytokines, TNF-alpha and IL-6, and the antiinflammatory cytokine, IL-10. Hepatocyte proliferation was increased by RAGE blockade, in parallel with significantly reduced apoptosis. These data highlight central roles for RAGE and MPDDCs in modulation of cell death-promoting mechanisms in massive hepatectomy and suggest that RAGE blockade is a novel strategy to promote regeneration in the massively injured liver
PMCID:2213026
PMID: 15699076
ISSN: 0022-1007
CID: 140603

RAGE: a journey from the complications of diabetes to disorders of the nervous system - striking a fine balance between injury and repair

Rong, Ling Ling; Gooch, Clifton; Szabolcs, Mattias; Herold, Kevan C; Lalla, Evanthia; Hays, Arthur P; Yan, Shi Fang; Yan, Shirley Shi Du; Schmidt, Ann Marie
The Receptor for Advanced Glycation End Products (RAGE) is a multiligand member of the immunoglobulin superfamily. RAGE interacts with AGEs, the products of nonenzymatic glycation/oxidation of proteins and lipids that accumulate in diverse settings, such as diabetes, inflammation, renal failure, pro-oxidant states and natural aging. In addition, RAGE is also a receptor for amyloid-beta peptide and beta-sheet fibril species. Recent studies underscore the premise that RAGE interacts with pro-inflammatory molecules, including S100/calgranulins and amphoterin, the latter also known as high mobility group box 1 (HMGB1). In chronic neurodegenerative disorders as well as in nerve tissue upon acute injury, evidence points to upregulation of both RAGE and these ligand families. In this review, we will discuss the implications of transient/self-limited upregulation of RAGE and its ligands, vs sustained/chronic upregulation of this axis in neurodegeneration vs repair in both the central and peripheral nervous systems. Experimental evidence supports the premise that RAGE bears both homeostatic and injurious properties in the nervous system, thereby highlighting 'yin/yang' features of this receptor and its ligand families
PMID: 16477098
ISSN: 0922-6028
CID: 140604