Try a new search

Format these results:

Searched for:

person:lw901

Total Results:

221


Giant Increase of Hardness in Silicon Carbide by Metastable Single Layer Diamond-Like Coating

Rejhon, Martin; Zhou, Xinliu; Lavini, Francesco; Zanut, Alessandra; Popovich, Filip; Schellack, Lorenzo; Witek, Lukasz; Coelho, Paulo; Kunc, Jan; Riedo, Elisa
Silicon carbide (SiC) is one of the hardest known materials. Its exceptional mechanical properties combined with its high thermal conductivity make it a very attractive material for a variety of technological applications. Recently, it is discovered that two-layer epitaxial graphene films on SiC can undergo a pressure activated phase transition into a sp3 diamene structure at room temperature. Here, it is shown that epitaxial graphene films grown on SiC can increase the hardness of SiC up to 100% at low loads (up to 900 µN), and up to 30% at high loads (10 mN). By using a Berkovich diamond indenter and nanoindentation experiments, it is demonstrated that the 30% increase in hardness is present even for indentations depths of 175 nm, almost three hundred times larger than the graphene film thickness. The experiments also show that the yield point of SiC increases up to 77% when the SiC surface is coated with epitaxial graphene. These improved mechanical properties are explained with the formation of diamene under the indenter's pressure.
PMCID:9951309
PMID: 36599685
ISSN: 2198-3844
CID: 5434292

The New Norm: Examining Quality of Life with Trigeminal Nerve Deficits and New Standards of Nerve Repair-A Systematic Review and Meta-analysis

Chapter by: Manon, Victoria A.; Tran, Huy Q.; Tursun, Ramzey; Coelho, Paulo G.; Witek, Lukasz; Wong, Mark E.; Young, Simon; Melville, James C.
in: Advancements and Innovations in OMFS, ENT, and Facial Plastic Surgery by
[S.l.] : Springer International Publishing, 2023
pp. 323-332
ISBN: 9783031320989
CID: 5717522

Impact of implant thread design on insertion torque and osseointegration: a preclinical model

Benalcázar-Jalkh, E-B; Nayak, V-V; Gory, C; Marquez-Guzman, A; Bergamo, E-T; Tovar, N; Coelho, P-G; Bonfante, E-A; Witek, L
BACKGROUND:Successful osseointegration of endosteal dental implants has been attributed to implant design, including the macro-, micro- and nano- geometric properties. Based on current literature pertaining to implant design, the resultant cellular and bone healing response is unknown when the thread thickness of the implants is increased, resulting in an increased contact area in implants designed with healing chambers. The aim of this study was to evaluate the effect of two implant designs with different thread profiles on the osseointegration parameters and implant stability at 3- and 6-weeks in vivo using a well-established preclinical dog model. MATERIAL AND METHODS/METHODS:A total of 48 type V Ti alloy implants were divided in two groups according to their thread design (D1= +0.1x/mm and D2= +0.15x/mm) and placed in an interpolated fashion into the radii of six beagles. Insertion torque was measured at time of placement, radii were extracted for histological processing following 3- and 6-week healing intervals. Histologic and histomorphometric analyses were performed in terms of bone to implant contact (%BIC) and bone area fraction occupancy within implant threads (%BAFO). Statistical analyses were performed through a linear mixed model with fixed factors of time and implant thread design. RESULTS:Surface roughness analysis demonstrated no significant differences in Sa and Sq between D1 and D2 implant designs, which confirmed that both implant designs were homogenous except for their respective thread profiles. For insertion torque, statistically significant lower values were recorded for D1 in comparison to D2 (59.6 ± 11.1 and 78.9 ± 10.1 N⋅cm, respectively). Furthermore, there were no significant differences with respect to histological analysis and histomorphometric parameters, between D1 and D2 at both time points. CONCLUSIONS:Both thread profiles presented equivalent potential to successfully osseointegrate in the osteotomies, with D2 yielding higher mechanical retention upon placement without detrimental bone resorption.
PMCID:9805329
PMID: 36173722
ISSN: 1698-6946
CID: 5409102

Evaluation of instrumentation and pedicle screw design for posterior lumbar fixation: A pre-clinical in vivo/ex vivo ovine model

Witek, Lukasz; Parente, Paulo Eduardo Lima; Torroni, Andrea; Greenberg, Michael; Nayak, Vasudev Vivekanand; Hacquebord, Jacques Henri; Coelho, Paulo G. G.
ISI:000915953900001
ISSN: 2572-1143
CID: 5439782

3D printed mesoporous bioactive glass, bioglass 45S5, and β-TCP scaffolds for regenerative medicine: A comparative in vitro study

Pacheco, Maria; Ricci, John L; Mijares, Dindo; Bromage, Timothy G; Rabieh, Sasan; Coelho, Paulo G; Witek, Lukasz
BACKGROUND:While autografts to date remain the "gold standard" for bone void fillers, synthetic bone grafts have garnered attention due to their advantages such as ability to be tailored in terms of its physical and chemical properties. Bioactive glass (BG), an inorganic material, has the capacity to form a strong bond with bone by forming a bone-like apatite surface, enhancing osteogenesis. Coupled with three-dimensional printing it is possible to maximize bone regenerative properties of the BG. OBJECTIVE:The objective of this study was to synthesize and characterize 3D printed mesoporous bioactive glass (MBG), BG 45S5, and compare to β-Tricalcium phosphate (β-TCP) based scaffolds; test cell viability and osteogenic differentiation on human osteoprogenitor cells in vitro. METHODS:MBG, BG 45S5, and β-TCP were fabricated into colloidal gel suspensions, tested with a rheometer, and manufactured into scaffolds using a 3D direct-write micro-printer. The materials were characterized in terms of microstructure and composition with Thermogravimetric Analyzer/Differential Scanning Calorimeter (TGA/DSC), Fourier Transform Infrared Spectroscopy (FTIR), X-ray Diffraction (XRD), Micro-Computed Tomography (μ-CT), Scanning Electron Microscopy (SEM), Energy Dispersive X-ray Spectroscopy (EDS), and Mattauch-Herzog-Inductively Coupled Plasma-Mass Spectrometry (MH-ICP-MS). RESULTS:Scaffolds were tested for cell proliferation and osteogenic differentiation using human osteoprogenitor cells. Osteogenic media was used for differentiation, and immunocytochemistry for osteogenic markers Runx-2, Collagen-I, and Osteocalcin. The cell viability results after 7 days of culture yielded significantly higher (p < 0.05) results in β-TCP scaffolds compared to BG 45S5 and MBG groups. CONCLUSION/CONCLUSIONS:All materials expressed osteogenic markers after 21 days of culture in expansion and osteogenic media.
PMID: 36744331
ISSN: 1878-3619
CID: 5434832

An in vivo preclinical study assessing biocompatibility of Pd-based bulk metallic glass

Witek, Lukasz; Vivekanand Nayak, Vasudev; Rodriguez Colon, Ricardo; Torroni, Andrea; Demetriou, Marios D; Coelho, Paulo G
BACKGROUND:The bulk metallic glass (BMG), Pd79Ag3.5P6Si9.5Ge2, has a high fracture toughness and has been found to accommodate post-yield stress, unlike most other BMG. Moreover, due to its greater noble gas composition it has a intrinsic corrosion resistance, ideal for dental and orthopedic implants. OBJECTIVE:This present study aimed to evaluate the in vivo application of Pd79Ag3.5P6Si9.5Ge2 in a large translational sheep model to assess its efficacy to be utilized as an endosteal device. METHODS:Twelve implants in the form of cylindrical rods (3 mm in diameter) were produced through rapid quenching. Each sheep (n = 12) received one osteotomy in the mandibular region using rotary instrumentation, which was subsequently filled with Pd79Ag3.5P6Si9.5Ge2. After 6- and 24-weeks the animals were euthanized, and samples collected en bloc to conduct histomorphometric analysis. The level/degrees of osseointegration were assessed through bone-to-implant contact (BIC). RESULTS:Favorable BIC was observed with fibrous connective tissue layers at both 6- and 24-weeks. Bone along with interfacial remodeling was observed in proximity with the metallic glass surface at 6 weeks with higher degrees of bone organization being observed at the later healing time, 24 weeks. CONCLUSIONS:The introduced BMG revealed potential to serve as an alternative biomaterial to commonly used Ti alloys given its unique combination of toughness and strength.
PMID: 36278332
ISSN: 1878-3619
CID: 5359252

Lineage-specific mutation of Lmx1b provides new insights into distinct regulation of suture development in different areas of the calvaria

Cabrera Pereira, Angel; Dasgupta, Krishnakali; Ho, Thach-Vu; Pacheco-Vergara, Maria; Kim, Julie; Kataria, Niam; Liang, Yaowei; Mei, Jeslyn; Yu, Jinyeong; Witek, Lukasz; Chai, Yang; Jeong, Juhee
The calvaria (top part of the skull) is made of pieces of bone as well as multiple soft tissue joints called sutures. The latter is crucial to the growth and morphogenesis of the skull, and thus a loss of calvarial sutures can lead to severe congenital defects in humans. During embryogenesis, the calvaria develops from the cranial mesenchyme covering the brain, which contains cells originating from the neural crest and the mesoderm. While the mechanism that patterns the cranial mesenchyme into bone and sutures is not well understood, function of Lmx1b, a gene encoding a LIM-domain homeodomain transcription factor, plays a key role in this process. In the current study, we investigated a difference in the function of Lmx1b in different parts of the calvaria using neural crest-specific and mesoderm-specific Lmx1b mutants. We found that Lmx1b was obligatory for development of the interfrontal suture and the anterior fontanel along the dorsal midline of the skull, but not for the posterior fontanel over the midbrain. Also, Lmx1b mutation in the neural crest-derived mesenchyme, but not the mesoderm-derived mesenchyme, had a non-cell autonomous effect on coronal suture development. Furthermore, overexpression of Lmx1b in the neural crest lineage had different effects on the position of the coronal suture on the apical part and the basal part. Other unexpected phenotypes of Lmx1b mutants led to an additional finding that the coronal suture and the sagittal suture are of dual embryonic origin. Together, our data reveal a remarkable level of regional specificity in regulation of calvarial development.
PMCID:10427921
PMID: 37593235
ISSN: 1664-042x
CID: 5618602

The Influence of Implant Design Features on Bone Healing Pathways: An Experimental Study in Sheep

Bergamo, Edmara Tp; de Oliveira, Paula Gpf; Jimbo, Ryo; Neiva, Rodrigo; Gil, Luiz F; Tovar, Nick; Witek, Lukasz; Bonfante, Estevam A; Coelho, Paulo G
The purpose of this study was to evaluate the influence of implant design features on osseointegration parameters. Two different implant macrogeometries and surface treatments were evaluated as follows: (1) progressive buttress threads possessing the SLActive surface (SLactive/BL), and (2) inner and outer trapezoidal threads possessing nano-hydroxyapatite coating over a dual acid-etched surface (Nano/U). Implants were placed in the right ilium of 12 sheep, and histologic/metric analyses were conducted after 12 weeks in vivo. The percentage of bone-to-implant contact (BIC) and bone area fraction occupancy (BAFO) within the threads were quantified. Histologic observations showed more intimate BIC in the SLactive/BL group compared to the Nano/U group. In contrast, the Nano/U group depicted woven bone formation generated between the wall of the osteotomy and implant threads within the healing chambers, while bone remodeling was evident at the tip of the outer thread. The SLActive/BL group presented higher BIC than the Nano/U group. On the other hand, significantly higher BAFO was observed at 12 weeks in the Nano/U group compared to the SLactive/BL group (P < .042). Differences in implant design features influenced the osseointegration pathway, which supports the need for further investigations to describe the clinical performance and differences in a timely fashion.
PMID: 36520119
ISSN: 1945-3388
CID: 5457162

A Histologic and Histomorphometric Evaluation of an Allograft, Xenograft, and Alloplast Graft for Alveolar Ridge Preservation in Humans: A Randomized Controlled Clinical Trial

Zampara, Eirini; Alshammari, Mukhlid; De Bortoli, Joao; Mullings, Otto; Gkisakis, Ioannis G; Benalcázar Jalkh, Ernesto B; Tovar, Nick; Coelho, Paulo G; Witek, Lukasz
The aim of this study was to clinically evaluate the guided bone regeneration (GBR) potential of allograft, xenograft, and alloplastic materials in combination with resorbable membranes in extraction sockets. The qualitative and quantitative assessments of this prospective study were accomplished through histologic and histomorphometric analysis. Three experimental groups and 1 control group for comparison (n = 8) received either an allograft (human cancellous bone, freeze dried, Deutsches Institut für Zell und Gewebeersatz, Berlin, Germany), xenograft (BioOss, Geistlich Pharma AG, Wolhusen, Switzerland), or alloplast (biphasic calcium sulphate, Bondbone, MIS Implants Technologies Ltd., Charlotte, NC). The negative control group received no regenerative material. Tissue samples were then qualitatively and quantitatively evaluated as a function of percentage of new vital bone, graft particles content, soft tissue, and bone marrow over time. All 3 study groups presented bone volume suitable for the successful placement of a dental implant. The xenograft group yielded significantly less amount of vital bone compared with the allograft and alloplast groups. When comparing the percentage of residual graft particles, there was significantly greater amounts associated with the xenograft group in contrast to the allograft and alloplast groups. Similarly, a significantly increased amount of soft tissue percentage was observed within the xenograft group relative to all other groups. No significant differences were observed in the percentage of residual graft particles between the allograft and alloplast groups. There were also no significant differences detected in vital bone percentage between the allograft, alloplast, and control groups. When evaluating the bone marrow percentage, the only significant difference detected was between the xenograft and alloplast materials. Overall, no complications (ie, fever, malaise, purulence or fistula) were observed during the entirety of clinical trial among all patients. The greatest GBR potential was associated with the allograft material because of the greater degree of vital bone and the lowest percentage of residual graft particles. All studied bone substitute materials resulted in bone apposition for efficient use in alveolar ridge preservation procedures.
PMID: 35446950
ISSN: 0160-6972
CID: 5433052

Laddec® versus Bio-Oss®: The effect on the healing of critical-sized defect - Calvaria rabbit model

Gil, Luiz Fernando; Nayak, Vasudev Vivekanand; Benalcázar Jalkh, Ernesto B; Tovar, Nick; Chiu, Kai-Jen; Salas, Jaime Campos; Marin, Charles; Bowers, Michelle; Freitas, Gileade; Mbe Fokam, Dejolie Christelle; Coelho, Paulo G; Witek, Lukasz
The aim of this study was to evaluate the in vivo performance of two different deproteinized bovine bone (DBB) grafting materials: DBBB (Bio-Oss®) and DBBL (Laddec®), for the regeneration of critically sized (8 mm) defects in rabbit's calvaria. Three round-shaped defects were surgically created in the calvaria of 13 New Zealand White rabbits proximal to the coronal suture in the parietal bone. Two of the defects were filled with one of the grafting materials while a third was left empty to serve as a negative control. Bone regeneration properties were evaluated at 4- and 8-weeks after implantation by means of histological and histomorphometrical analyses. Statistical analyses were performed through a mixed model analysis with fixed factors of time and material. Histological evaluation of the control group evidenced a lack of bridging bone formation across the defect sites at both evaluation time points. For the experimental groups, new bone formation was observed around the defect periphery and to progress radially inwards to the center of the defect site, regardless of the grafting material. Histomorphometric analyses at 4 weeks demonstrated higher amount of bone formation through the defect for DBBB group. However, at 8 weeks, DBBL and DBBB demonstrated osteoconductivity and low resorption rates with evidence of statistically similar bone regeneration through the complete boney defect. Finally, DBBB presented lower soft tissue migration within the defect when compared to DBBL at both evaluation time points. DBBB and DBBL presented similar bone regeneration performance and slow resorption rates. Although both materials promoted bone regeneration through the complete defect, DBBB presented lower soft tissue migration within the defects at 4- and 8-weeks.
PMID: 35857711
ISSN: 1552-4981
CID: 5279162