Try a new search

Format these results:

Searched for:

person:lw901

Total Results:

221


Drug-Eluting Rubber Bands for Tissue Ligation

Feiner, Ron; Johns, Eleanor; Antman-Passig, Merav; Irie, Takeshi; Berisha, Naxhije; Oved, Hadas; Khan, Doha; Witek, Lukasz; White, Richard M; Heller, Daniel A
Rubber band ligation is a commonly used method for the removal of tissue abnormalities. Most often, rubber band ligation is performed to remove internal hemorrhoids unresponsive to first line treatments to avoid surgery. While the procedure is considered safe, patients experience mild to significant pain and discomfort until the tissue sloughs off. As patients often require multiple bandings and sessions, reducing these side effects can have a considerable effect on patient adherence and quality of life. To reduce pain and discomfort, we developed drug-eluting rubber bands for ligation procedures. We investigated the potential for a band to elute anesthetics and drug combinations to durably manage pain for a period of up to 5 days while exhibiting similar mechanical properties to conventional rubber bands. We show that the rubber bands retain their mechanical properties despite significant drug loading. Lidocaine, released from the bands, successfully altered the calcium dynamics of cardiomyocytes in vitro and modulated heart rate in zebrafish embryos, while the bands exhibited lower cytotoxicity than conventional bands. Ex vivo studies demonstrated substantial local drug release in enteric tissues. These latex-free bands exhibited sufficient mechanical and drug-eluting properties to serve both ligation and local analgesic functions, potentially enabling pain reduction for multiple indications.
PMID: 35670525
ISSN: 1944-8252
CID: 5249742

Bone Tissue Engineering Strategies for Alveolar Cleft: Review of Preclinical Results and Guidelines for Future Studies

Park, Jenn J; Rochlin, Danielle H; Parsaei, Yassmin; Shetye, Pradip R; Witek, Lukasz; Leucht, Philipp; Rabbani, Piul S; Flores, Roberto L
The current standard of care for an alveolar cleft defect is an autogenous bone graft, typically from the iliac crest. Given the limitations of alveolar bone graft surgery, such as limited supply, donor site morbidity, graft failure, and need for secondary surgery, there has been growing interest in regenerative medicine strategies to supplement and replace traditional alveolar bone grafts. Though there have been preliminary clinical studies investigating bone tissue engineering methods in human subjects, lack of consistent results as well as limitations in study design make it difficult to determine the efficacy of these interventions. As the field of bone tissue engineering is rapidly advancing, reconstructive surgeons should be aware of the preclinical studies informing these regenerative strategies. We review preclinical studies investigating bone tissue engineering strategies in large animal maxillary or mandibular defects and provide an overview of scaffolds, stem cells, and osteogenic agents applicable to tissue engineering of the alveolar cleft. An electronic search conducted in the PubMed database up to December 2021 resulted in 35 studies for inclusion in our review. Most studies showed increased bone growth with a tissue engineering construct compared to negative control. However, heterogeneity in the length of follow up, method of bone growth analysis, and inconsistent use of positive control groups make comparisons across studies difficult. Future studies should incorporate a pediatric study model specific to alveolar cleft with long-term follow up to fully characterize volumetric defect filling, cellular ingrowth, bone strength, tooth movement, and implant support.
PMID: 35678607
ISSN: 1545-1569
CID: 5248492

Locally Secreted Semaphorin 4D Is Engaged in Both Pathogenic Bone Resorption and Retarded Bone Regeneration in a Ligature-Induced Mouse Model of Periodontitis

Ishii, Takenobu; Ruiz-Torruella, Montserrat; Yamamoto, Kenta; Yamaguchi, Tsuguno; Heidari, Alireza; Pierrelus, Roodelyne; Leon, Elizabeth; Shindo, Satoru; Rawas-Qalaji, Mohamad; Pastore, Maria Rita; Ikeda, Atsushi; Nakamura, Shin; Mawardi, Hani; Kandalam, Umadevi; Hardigan, Patrick; Witek, Lukasz; Coelho, Paulo G; Kawai, Toshihisa
It is well known that Semaphorin 4D (Sema4D) inhibits IGF-1-mediated osteogenesis by binding with PlexinB1 expressed on osteoblasts. However, its elevated level in the gingival crevice fluid of periodontitis patients and the broader scope of its activities in the context of potential upregulation of osteoclast-mediated periodontal bone-resorption suggest the need for further investigation of this multifaceted molecule. In short, the pathophysiological role of Sema4D in periodontitis requires further study. Accordingly, attachment of the ligature to the maxillary molar of mice for 7 days induced alveolar bone-resorption accompanied by locally elevated, soluble Sema4D (sSema4D), TNF-α and RANKL. Removal of the ligature induced spontaneous bone regeneration during the following 14 days, which was significantly promoted by anti-Sema4D-mAb administration. Anti-Sema4D-mAb was also suppressed in vitro osteoclastogenesis and pit formation by RANKL-stimulated BMMCs. While anti-Sema4D-mAb downmodulated the bone-resorption induced in mouse periodontitis, it neither affected local production of TNF-α and RANKL nor systemic skeletal bone remodeling. RANKL-induced osteoclastogenesis and resorptive activity were also suppressed by blocking of CD72, but not Plexin B2, suggesting that sSema4D released by osteoclasts promotes osteoclastogenesis via ligation to CD72 receptor. Overall, our data indicated that ssSema4D released by osteoclasts may play a dual function by decreasing bone formation, while upregulating bone-resorption.
PMID: 35628440
ISSN: 1422-0067
CID: 5236292

Self-assembling human skeletal organoids for disease modeling and drug testing

Abraham, Diana M; Herman, Calvin; Witek, Lukasz; Cronstein, Bruce N; Flores, Roberto L; Coelho, Paulo G
Skeletal conditions represent a considerable challenge to health systems globally. Barriers to effective therapeutic development include a lack of accurate preclinical tissue and disease models. Most recently, work was attempted to present a novel whole organ approach to modeling human bone and cartilage tissues. These self-assembling skeletal organoids mimic the cellular milieu and extracellular organization present in native tissues. Bone organoids demonstrated osteogenesis and micro vessel formation, and cartilage organoids showed evidence of cartilage development and maturation. Skeletal organoids derived from both bone and cartilage tissues yielded spontaneous polarization of their cartilaginous and bone components. Using these hybrid skeletal organoids, we successfully generated "mini joint" cultures, which we used to model inflammatory disease and test Adenosine (A2A ) receptor agonists as a therapeutic agent. The work and respective results indicated that skeletal organoids can be an effective biological model for tissue development and disease as well as to test therapeutic agents.
PMID: 34837719
ISSN: 1552-4981
CID: 5063982

Effects of a local single dose administration of growth hormone on the osseointegration of titanium implants

Grossi, J-R; Parra, M; Benalcázar-Jalkh, E-B; Giovanini, A-F; Zielak, J-C; Sebstiani, A-M; Gonzaga, C-C; Coelho, P-G; Witek, L; Deliberador, T-M
BACKGROUND:The aim of the present study was to evaluate the effect of different concentrations of growth hormone (GH) on endosteal implant's surface at the early stages of osseointegration. MATERIAL AND METHODS/METHODS:Sixty tapered acid-etched titanium implants were divided into four groups: i) Collagen, used as a control group; and three experimental groups, where after collagen coating, GH was administered directly to the surface in varying concentrations: ii) 0.265 mg, iii) 0.53 mg, and iv) 1 mg. Implants were placed in an interpolated fashion in the anterior flange of C3, C4 or C5 of 15 sheep with minimum distance of 6 mm between implants. After 3-, 6- and 12-weeks of healing samples were harvested, histologically processed, qualitatively and quantitatively assessed for bone-to-implant contact (BIC) and bone area fraction occupancy (BAFO). RESULTS:Statistical analysis as a function of time in vivo and coating resulted in no significant differences for BIC and BAFO at any evaluation time point. Histological evaluation demonstrated similar osseointegration features for all groups with woven bone formation at 3 weeks and progressive replacement of woven for lamellar bone in close contact with the implant surface and within the implant's threads. CONCLUSIONS:A single local application of growth hormone to the surface of titanium implants did not yield improved implant osseointegration independent of healing time.
PMID: 35218646
ISSN: 1698-6946
CID: 5172642

Osteoradionecrosis following radiation to reconstructed mandible with titanium plate and osseointegrated dental implants

Byun, David J; Daar, David A; Spuhler, Karl; Anzai, Lavinia; Witek, Lukasz; Barbee, David; Jacobson, Adam S; Levine, Jamie P; Hu, Kenneth S
PMID: 34706296
ISSN: 1879-8519
CID: 5042562

Trends in 3D Printing Parts for Medical and Dental Implant Technologies

Chapter by: Witek, Lukasz; Tovar, Nick
in: Encyclopedia of Materials: Plastics and Polymers by
[S.l.] : Elsevier, 2022
pp. 902-912
ISBN: 9780128232910
CID: 5457292

Physiochemical and bactericidal activity evaluation: Silver-augmented 3D-printed scaffolds-An in vitro study

Nayak, Vasudev Vivekanand; Tovar, Nick; Hacquebord, Jacques Henri; Duarte, Simone; Panariello, Beatriz H D; Tonon, Caroline; Atria, Pablo J; Coelho, Paulo G; Witek, Lukasz
HYPOTHESIS/OBJECTIVE:Injuries requiring resection of tissue followed by autogenous bone transfer may be prone to infection by Staphylococcus aureus, impeding recovery and increasing medical costs. For critical sized defects, the common approach to reconstruction is a tissue transfer procedure but is subject to limitations (e.g., donor site morbidity, cost, operating time). Utilizing beta tricalcium phosphate (β-TCP) as bone grafting material augmented with silver (Ag), a custom graft may be 3D printed to overcome limitations and minimize potential infections. EXPERIMENTS/METHODS:) groups followed by electron microscopy, thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC) to gather information of chemical and physical properties. Preliminary biocompatibility and bactericidal capacity of the scaffolds were tested using human osteoprogenitor (hOP) cells and methicillin-sensitive S. aureus strain, respectively. RESULTS:groups, whereas electron microscopy showed a decrease in Ca and an increase in Ag ions, decreasing Ca/P ratio with increasing surfactant concentrations. PrestoBlue assays yielded an increase in fluorescence cell counts among experimental groups with lower concentrations of Ag characterized by their characteristic trapezoidal shape whereas cytotoxicity was observed at higher concentrations. Similar observations were made with alkaline phosphatase assays. Antimicrobial evaluation showed reduced colony-forming units (CFU) among all experimental groups when compared to 100% β-TCP. β-TCP scaffolds augmented with Ag ions facilitate antibacterial effects while promoting osteoblast adhesion and proliferation.
PMID: 34196107
ISSN: 1552-4981
CID: 4932082

Residual stress estimated by nanoindentation in pontics and abutments of veneered zirconia fixed dental prostheses

Fardin, Vinicius Pavesi; Bonfante, Gerson; Coelho, Paulo G; Bergamo, Edmara T P; Bordin, Dimorvan; Janal, Malvin N; Tovar, Nick; Witek, Lukasz; Bonfante, Estevam A
Glass ceramics' fractures in zirconia fixed dental prosthesis (FDP) remains a clinical challenge since it has higher fracture rates than the gold standard, metal ceramic FDP. Nanoindentation has been shown a reliable tool to determine residual stress of ceramic systems, which can ultimately correlate to failure-proneness.
PMCID:9041093
PMID: 35476114
ISSN: 1678-7765
CID: 5206382

The effect of worked material hardness on stone tool wear

Rodriguez, Alice; Yanamandra, Kaushik; Witek, Lukasz; Wang, Zhong; Behera, Rakesh K; Iovita, Radu
The identification of ancient worked materials is one of the fundamental goals of lithic use wear analysis and one of the most important parts of understanding how stone tools were used in the past. Given the documented overlaps in wear patterns generated by different materials, it is imperative to understand how individual materials' mechanical properties might influence wear formation. Because isolating physical parameters and measuring their change is necessary for such an endeavor, controlled (rather than replicative) experiments combined with objective measurements of surface topography are necessary to better grasp how surface modifications formed on stone tools. Therefore, we used a tribometer to wear natural flint surfaces against five materials (bone, antler, beech wood, spruce wood, and ivory) under the same force, and speed, over one, three, and five hours. The study aimed to test if there is a correlation between surface modifications and the hardness of the worked material. We measured each raw material's hardness using a nano-indentation test, and we compared the surface texture of the flint bits using a 3D optical profilometer. The interfacial detritus powder was analyzed with a scanning electron microscope to look for abraded flint particles. We demonstrate that, contrary to expectation, softer materials, such as wood, create a smoother surface than hard ones, such as ivory.
PMCID:9584531
PMID: 36264949
ISSN: 1932-6203
CID: 5352502