Searched for: person:sy23
Ex vivo nonviral gene delivery of mu-opioid receptor to attenuate cancer-induced pain
Yamano, Seiichi; Viet, Chi T; Dang, Dongmin; Dai, Jisen; Hanatani, Shigeru; Takayama, Tadahiro; Kasai, Hironori; Imamura, Kentaro; Campbell, Ron; Ye, Yi; Dolan, John C; Kwon, William Myung; Schneider, Stefan D; Schmidt, Brian L
Virus-mediated gene delivery shows promise for the treatment of chronic pain. However, viral vectors have cytotoxicity. To avoid toxicities and limitations of virus-mediated gene delivery, we developed a novel nonviral hybrid vector: HIV-1 Tat peptide sequence modified with histidine and cysteine residues combined with a cationic lipid. The vector has high transfection efficiency with little cytotoxicity in cancer cell lines including HSC-3 (human tongue squamous cell carcinoma) and exhibits differential expression in HSC-3 ( approximately 45-fold) relative to HGF-1 (human gingival fibroblasts) cells. We used the nonviral vector to transfect cancer with OPRM1, the mu-opioid receptor gene, as a novel method for treating cancer-induced pain. After HSC-3 cells were transfected with OPRM1, a cancer mouse model was created by inoculating the transfected HSC-3 cells into the hind paw or tongue of athymic mice to determine the analgesic potential of OPRM1 transfection. Mice with HSC-3 tumors expressing OPRM1 demonstrated significant antinociception compared with control mice. The effect was reversible with local naloxone administration. We quantified beta-endorphin secretion from HSC-3 cells and showed that HSC-3 cells transfected with OPRM1 secreted significantly more beta-endorphin than control HSC-3 cells. These findings indicate that nonviral delivery of the OPRM1 gene targeted to the cancer microenvironment has an analgesic effect in a preclinical cancer model, and nonviral gene delivery is a potential treatment for cancer pain.
PMCID:5584564
PMID: 28092646
ISSN: 1872-6623
CID: 2412132
The potential of stromal cell-derived factor-1 delivery using a collagen membrane for bone regeneration
Takayama, Tadahiro; Dai, Jisen; Tachi, Keita; Shohara, Ryutaro; Kasai, Hironori; Imamura, Kentaro; Yamano, Seiichi
Stromal cell-derived factor-1 (SDF-1) is a cytokine that is important in stem and progenitor cell recruitment in tissue repair after injury. Regenerative procedures using collagen membranes (CMs) are presently well established in periodontal and implant dentistry. The objective of this study is to test the subsequent effects of the released SDF-1 from a CM on bone regeneration compared to platelet-derived growth factor (PDGF) in vitro and in vivo. For in vitro studies, cell proliferation, alkaline phosphatase activity, and osteoblastic differentiation marker genes were assessed after MC3T3-E1 mouse preosteoblasts were cultured with CMs containing factors. In vivo effects were investigated by placement of CMs containing SDF-1 or PDGF using a rat mandibular bone defect model. At 4 weeks after the surgery, the new bone formation was measured using micro-computed tomography (microCT) and histological analysis. The results of in vitro studies revealed that CM delivery of SDF-1 significantly induced cell proliferation, ALP activity, and gene expression of all osteogenic markers compared to the CM alone or control, similar to PDGF. Quantitative and qualitative microCT analysis for volume of new bone formation and the percentage of new bone area showed that SDF-1-treated groups significantly increased and accelerated bone regeneration compared to control and CM alone. The enhancement of bone formation in SDF-1-treated animals was dose-dependent and with levels similar to those measured with PDGF. These results suggest that a CM with SDF-1 may be a great candidate for growth factor delivery that could be a substitute for PDGF in clinical procedures where bone regeneration is necessary.
PMID: 28056602
ISSN: 1530-8022
CID: 2386812
Nanometer-Scale Features on Micrometer-Scale Surface Texturing: A Bone Histological, Gene Expression, and Nanomechanical Study
Coelho, Paulo G; Takayama, Tadahiro; Yoo, Daniel; Jimbo, Ryo; Karunagaran, Sanjay; Tovar, Nick; Janal, Malvin N; Yamano, Seiichi
Micro- and nanoscale surface modifications have been the focus of multiple studies in the pursuit of accelerating bone apposition or osseointegration at the implant surface. Here, we evaluated histological and nanomechanical properties, and gene expression, for a microblasted surface presenting nanometer-scale texture within a micrometer-scale texture (MB) (Ossean Surface, Intra-Lock International, Boca Raton, FL) versus a dual-acid etched surface presenting texture at the micrometer-scale only (AA), in a rodent femur model for 1, 2, 4, and 8weeks in vivo. Following animal sacrifice, samples were evaluated in terms of histomorphometry, biomechanical properties through nanoindentation, and gene expression by real-time quantitative reverse transcription polymerase chain reaction analysis. Although the histomorphometric, and gene expression analysis results were not significantly different between MB and AA at 4 and 8weeks, significant differences were seen at 1 and 2weeks. The expression of the genes encoding collagen type I (COL-1), and osteopontin (OPN) was significantly higher for MB than for AA at 1week, indicating upregulated osteoprogenitor and osteoblast differentiation. At 2weeks, significantly upregulated expression of the genes for COL-1, runt-related transcription factor 2 (RUNX-2), osterix, and osteocalcin (OCN) indicated progressive mineralization in newly formed bone. The nanomechanical properties tested by the nanoindentation presented significantly higher rank hardness and elastic modulus for the MB compared to AA at all time points tested. In conclusion, the nanotopographical featured surfaces presented an overall higher host-to-implant response compared to the microtextured only surfaces. The statistical differences observed in some of the osteogenic gene expression between the two groups may shed some insight into the role of surface texture and its extent in the observed bone healing mechanisms.
PMID: 24813260
ISSN: 1873-2763
CID: 979592
Gene delivery from supercharged coiled-coil protein and cationic lipid hybrid complex
More, Haresh T; Frezzo, Joseph A; Dai, Jisen; Yamano, Seiichi; Montclare, Jin K
A lipoproteoplex comprised of an engineered supercharged coiled-coil protein (CSP) bearing multiple arginines and the cationic lipid formulation FuGENE HD (FG) was developed for effective condensation and delivery of nucleic acids. The CSP was able to maintain helical structure and self-assembly properties while exhibiting binding to plasmid DNA. The ternary CSP.DNA(8:1).FG lipoproteoplex complex demonstrated enhanced transfection of beta-galactosidase DNA into MC3T3-E1 mouse preosteoblasts. The lipoproteoplexes showed significant increases in transfection efficiency when compared to conventional FG and an mTat.FG lipopolyplex with a 6- and 2.5-fold increase in transfection, respectively. The CSP.DNA(8:1).FG lipoproteoplex assembled into spherical particles with a net positive surface charge, enabling efficient gene delivery. These results support the application of lipoproteoplexes with protein engineered CSP for non-viral gene delivery.
PMCID:4099184
PMID: 24875765
ISSN: 0142-9612
CID: 1019062
Efficient in vivo gene delivery using modified Tat peptide with cationic lipids
Yamano, Seiichi; Dai, Jisen; Hanatani, Shigeru; Haku, Ken; Yamanaka, Takuto; Ishioka, Mika; Takayama, Tadahiro; Moursi, Amr M
A combination of modified HIV-1 Tat (mTat) peptide and cationic lipids, FuGENE HD (FH), dramatically enhanced transfection efficiency across a range of cell lines when compared to mTat or FH alone (Biomaterials 35:1705-1715 2014). The efficiency of this Tat peptide combination was significantly higher than many commercial non-viral vectors. In this present study, we tested the feasibility of this non-viral vector, mTat/FH, in vivo using plasmid DNA encoding a luciferase gene. The results of the in vivo studies showed that animals administered mTat/FH/DNA intramuscularly had significantly higher and longer luciferase expression ( approximately 7 months) than those with mTat/DNA, FH/DNA, or DNA alone. Histological evaluation showed little immune response in the muscles, livers, and kidneys of mice administered with the mTat/FH. The combination of mTat with FH could significantly improve transfection efficiency, expanding the potential use of non-viral gene vectors in vivo.
PMCID:3777659
PMID: 24573442
ISSN: 0141-5492
CID: 820962
The effect of a bioactive collagen membrane releasing PDGF or GDF-5 on bone regeneration
Yamano, Seiichi; Haku, Ken; Yamanaka, Takuto; Dai, Jisen; Takayama, Tadahiro; Shohara, Ryutaro; Tachi, Keita; Ishioka, Mika; Hanatani, Shigeru; Karunagaran, Sanjay; Wada, Keisuke; Moursi, Amr M
Regenerative procedures using barrier membrane technology are presently well established in periodontal/endodontic surgery. The objective of this study was to compare the subsequent effects of the released platelet-derived growth factor (PDGF) and growth/differentiation factor 5 (GDF-5) from collagen membranes (CMs) on bone regeneration in vitro and in vivo. In vitro studies were conducted using MC3T3-E1 mouse preosteoblasts cultured with or without factors. Cell viability, cell proliferation, alkaline phosphatase (ALP) activity and bone marker gene expression were then measured. In vivo studies were conducted by placing CMs with low or high dose PDGF or GDF-5 in rat mandibular defects. At 4 weeks after surgery new bone formation was measured using muCT and histological analysis. The results of in vitro studies showed that CM/GDF-5 significantly increased ALP and cell proliferation activities without cytotoxicity in MC3T3-E1 cells when compared to CM/PDGF or CM alone. Gene expression analysis revealed that Runx2 and Osteocalcin were significantly increased in CM/GDF-5 compared to CM/PDGF or control. Quantitative and qualitative muCT and histological analysis for new bone formation revealed that although CM/PDGF significantly enhanced bone regeneration compared to CM alone or control, CM/GDF-5 significantly accelerated bone regeneration to an even greater extent than CM/PDGF. The results also showed that GDF-5 induced new bone formation in a dose-dependent manner. These results suggest that this strategy, using a CM carrying GDF-5, might lead to an improvement in the current clinical treatment of bone defects for periodontal and implant therapy.
PMID: 24388383
ISSN: 0142-9612
CID: 720432
Long-term efficient gene delivery using polyethylenimine with modified Tat peptide
Yamano, Seiichi; Dai, Jisen; Hanatani, Shigeru; Haku, Ken; Yamanaka, Takuto; Ishioka, Mika; Takayama, Tadahiro; Yuvienco, Carlo; Khapli, Sachin; Moursi, Amr M; Montclare, Jin K
Polyethylenimine (PEI), a cationic polymer, has been widely studied and shown great promise as an efficient gene delivery vehicle. Likewise, the HIV-1 Tat peptide, a cell-permeable peptide, has been successfully used for intracellular gene delivery. To improve the favorable properties of these two vectors, we combine PEI with the modified Tat peptide sequence bearing histidine and cysteine residues (mTat). In vitro mTat/PEI-mediated transfection was evaluated by luciferase expression plasmid in two cell types. mTat/PEI produced significant improvement ( approximately 5-fold) in transfection efficiency of both cell lines with little cytotoxicity when compared to mTat alone, PEI alone, or four commercial reagents. The particle size of mTat/PEI/DNA complex was significantly smaller than mTat or PEI alone, and it was correlated with higher transfection efficiency. Filipin III, an inhibitor of caveolae-mediated endocytosis, significantly inhibited mTat/PEI transfection. In contrast, chlorpromazine, an inhibitor of clathrin-mediated endocytosis, did not. This suggested caveolae-mediated endocytosis as the transfection mechanism. Furthermore, the results of in vivo studies showed that animals administered mTat/PEI/DNA intramuscularly had significantly higher and longer luciferase expression ( approximately 7 months) than those with mTat/DNA, PEI/DNA, or DNA alone, without any associated toxicity. The combination of mTat with PEI could significantly improve transfection efficiency, expanding the potential use as a non-viral gene vector both in vitro and in vivo.
PMID: 24268201
ISSN: 0142-9612
CID: 652082
Role of salivary vascular endothelial growth factor (VEGF) in palatal mucosal wound healing
Keswani, Sundeep G; Balaji, Swathi; Le, Louis D; Leung, Alice; Parvadia, Jignesh K; Frischer, Jason; Yamano, Seiichi; Taichman, Norton; Crombleholme, Timothy M
The mucosa of alimentary tract heals more rapidly than cutaneous wounds. The underlying mechanisms of this enhanced healing have not been completely elucidated. Constant exposure to salivary growth factors has been shown to play a critical role in mucosal homeostasis and tissue repair. Angiogenesis also has an essential role in successful wound repair. One of the main angiogenic growth factors, vascular endothelial growth factor (VEGF), has a pleiotropic role in tissue repair via neovascularization, reepithelialization, and regulation of extracellular matrix. We have previously reported a critical role for salivary VEGF in bowel adaptation after small bowel resection. We hypothesize that salivary VEGF is an essential stimulus for oral mucosal tissue repair, and use the murine palatal wound model to test our hypothesis. In a loss-of-function experiment, we removed the primary source of VEGF production through selective submandibular gland (SMG) sialoadenectomy in a murine model and observed the effects on wound closure and neovascularization. We then performed a selective loss-of-function experiment using the protein VEGF-Trap to inhibit salivary VEGF. In a gain-of-function experiment, we supplemented oral VEGF following SMG sialoadenectomy. After SMG sialoadenectomy, there was significant reduction in salivary VEGF level, wound closure, and vessel density. Lower levels of salivary VEGF were correlated with impaired neovascularization and reepithelialization. The selective blockade of VEGF using VEGF-Trap resulted in a similar impairment in wound healing and neovascularization. The sole supplementation of oral VEGF after SMG sialoadenectomy rescued the impaired wound healing phenotype and restored neovascularization to normal levels. These data show a novel role for salivary-VEGF in mucosal wound healing, and provide a basis for the development of novel therapeutics aimed at augmenting wound repair of the oral mucosa, as well as wounds at other sites in the alimentary tract.
PMCID:4528184
PMID: 23758212
ISSN: 1524-475x
CID: 1815442
Downregulated gene expression of TGF-betas in diabetic oral wound healing
Yamano, Seiichi; Kuo, Winston P; Sukotjo, Cortino
BACKGROUND: Healing of tooth extraction sockets in poorly controlled diabetic patients is often delayed and accompanied by severe infection. The exact cellular and molecular mechanisms underlying the pathogenesis of this complication are still not fully understood. OBJECTIVES: The purpose of this study was to investigate molecular changes associated with delayed oral wound healing in diabetes. MATERIALS AND METHODS: Six to eight weeks old male type 2 diabetes and age matched control inbred mice were used and maxillary molar tooth extractions were performed. At 4 and 7 days after tooth extraction, the edentulous mucosa of the mice were harvested, and analyzed for histology and gene expression of key wound healing factors. RESULTS: In the diabetic model, histological analysis showed that epithelial tissue migration for wound closure was delayed after tooth extraction compared to the control. Quantitative real-time PCR revealed that expression of the TGF-beta1, TGF-beta2, TGF-beta3, TGFbetaRII and TGFbetaRIII genes was significantly downregulated in the diabetic model at 4 and 7 days after tooth extraction. CONCLUSION: These results suggest that delayed wound healing of oral mucosa in diabetes may be associated with decreased expression levels of these regulatory genes which play important roles in controlling epithelial wound closure.
PMID: 22964221
ISSN: 1010-5182
CID: 178041
The Potential of Tissue Engineering and Regeneration for Craniofacial Bone
Yamano, Seiichi; Haku, Ken, Ishioka, Mika; Lin, Terry Y; Hunatani, Shigeru; Dai, Jisen; Moursi, Amir M
ORIGINAL:0009963
ISSN: 2161-1122
CID: 1816092