Searched for: person:sy1007
IGF-1 and bone: New discoveries from mouse models
Yakar, Shoshana; Courtland, Hayden-William; Clemmons, David
Insulin-like growth factor-1 (IGF-1) plays a central role in cellular growth, differentiation, survival, and cell cycle progression. It is expressed early during development and its effects are mediated through binding to a tyrosine kinase receptor, the insulin-like growth factor-1 receptor (IGF-1R). In the circulation, the IGFs bind to IGF-binding proteins (IGFBPs), which determine their bioavailability and regulate the interaction between the IGFs and IGF-1R. Studies in animal models and in humans have established critical roles for IGFs in skeletal growth and development. In this review we present new and old findings from mouse models of the IGF system and discuss their clinical relevance to normal and pathological skeletal physiology.
PMCID:3179280
PMID: 20836088
ISSN: 0884-0431
CID: 160975
Mammalian target of rapamycin inhibition abrogates insulin-mediated mammary tumor progression in type 2 diabetes
Fierz, Yvonne; Novosyadlyy, Ruslan; Vijayakumar, Archana; Yakar, Shoshana; LeRoith, Derek
Type 2 diabetes increases breast cancer risk and mortality, and hyperinsulinemia is a major mediator of this effect. The mammalian target of rapamycin (mTOR) is activated by insulin and is a key regulator of mammary tumor progression. Pharmacological mTOR inhibition suppresses tumor growth in numerous mammary tumor models in the non-diabetic setting. However, the role of the mTOR pathway in type 2 diabetes-induced tumor growth remains elusive. Herein, we investigated whether the mTOR pathway is implicated in insulin-induced mammary tumor progression in a transgenic mouse model of type 2 diabetes (MKR mice) and evaluated the impact of mTOR inhibition on the diabetic state. Mammary tumor progression was studied in the double transgenic MMTV-Polyoma Virus middle T antigen (PyVmT)/MKR mice and by orthotopic inoculation of PyVmT- and Neu/ErbB2-driven mammary tumor cells (Met-1 and MCNeuA cells respectively). mTOR inhibition by rapamycin markedly suppressed tumor growth in both wild-type and MKR mice. In diabetic animals, however, the promoting action of insulin on tumor growth was completely blunted by rapamycin, despite a worsening of the carbohydrate and lipid metabolism. Taken together, pharmacological mTOR blockade is sufficient to abrogate mammary tumor progression in the setting of hyperinsulinemia, and thus mTOR inhibitors may be an attractive therapeutic modality for breast cancer patients with type 2 diabetes. Careful monitoring of the metabolic state, however, is important as dose adaptations of glucose- and/or lipid-lowering therapy might be necessary.
PMCID:4082826
PMID: 20801951
ISSN: 1351-0088
CID: 160976
Sex-specific regulation of body size and bone slenderness by the acid labile subunit
Courtland, Hayden-William; DeMambro, Victoria; Maynard, Jane; Sun, Hui; Elis, Sebastien; Rosen, Clifford; Yakar, Shoshana
Insulin-like growth factor 1 (IGF-1) is a crucial mediator of body size and bone mass during growth and development. In serum, IGF-1 is stabilized by several IGF-1-binding proteins (IGFBPs) and the acid labile subunit (ALS). Previous research using ALS knockout (ALSKO) mice indicated a growth retardation phenotype, and clinical reports of humans have indicated short stature and low bone mineral density (BMD) in patients with ALS deficiency. To determine the temporal and sex-specific effects of ALS deficiency on body size and skeletal development during growth, we characterized control and ALSKO mice from 4 to 16 weeks of age. We found that female ALSKO mice had an earlier-onset reduction in body size (4 weeks) but that both female and male ALSKO mice were consistently smaller than control mice. Interestingly, skeletal analyses at multiple ages showed increased slenderness of ALSKO femurs that was more severe in females than in males. Both male and female ALSKO mice appeared to compensate for their more slender bones through increased bone formation on their endosteal surfaces during growth, but ALSKO females had increased endosteal bone formation compared with ALSKO males. This study revealed age- and sex-specific dependencies of body size and bone size on the ALS. These findings may explain the heterogeneity in growth and BMD measurements reported in human ALS-deficient patients.
PMCID:3118255
PMID: 20499371
ISSN: 0884-0431
CID: 160977
Elevated serum IGF-1 levels synergize PTH action on the skeleton only when the tissue IGF-1 axis is intact
Elis, Sebastien; Courtland, Hayden-William; Wu, Yingjie; Fritton, J Christopher; Sun, Hui; Rosen, Clifford J; Yakar, Shoshana
There is growing evidence that insulin-like growth factor 1 (IGF-1) and parathyroid hormone (PTH) have synergistic actions on bone and that part of the anabolic effects of PTH is mediated by local production of IGF-1. In this study we analyzed the skeletal response to PTH in mouse models with manipulated endocrine or autocrine/paracrine IGF-1. We used mice carrying a hepatic IGF-1 transgene (HIT), which results in a threefold increase in serum IGF-1 levels and normal tissue IGF-1 expression, and Igf1 null mice with blunted IGF-1 expression in tissues but threefold increases in serum IGF-1 levels (KO-HIT). Evaluation of skeletal growth showed that elevations in serum IGF-1 in mice with Igf1 gene ablation in all tissues except the liver (KO-HIT) resulted in a restoration of skeletal morphology and mechanical properties by adulthood. Intermittent PTH treatment of adult HIT mice resulted in increases in serum osteocalcin levels, femoral total cross-sectional area, cortical bone area and cortical bone thickness, as well as bone mechanical properties. We found that the skeletal response of HIT mice to PTH was significantly higher than that of control mice, suggesting synergy between IGF-1 and PTH on bone. In sharp contrast, although PTH-treated KO-HIT mice demonstrated an anabolic response in cortical and trabecular bone compartments compared with vehicle-treated KO-HIT mice, their response was identical to that of PTH-treated control mice. We conclude that (1) in the presence of elevated serum IGF-1 levels, PTH can exert an anabolic response in bone even in the total absence of tissue IGF-1, and (2) elevations in serum IGF-1 levels synergize PTH action on bone only if the tissue IGF-1 axis is intact. Thus enhancement of PTH anabolic actions depends on tissue IGF-1.
PMCID:3118256
PMID: 20499370
ISSN: 0884-0431
CID: 160978
Elevated serum levels of IGF-1 are sufficient to establish normal body size and skeletal properties even in the absence of tissue IGF-1
Elis, Sebastien; Courtland, Hayden-William; Wu, Yingjie; Rosen, Clifford J; Sun, Hui; Jepsen, Karl J; Majeska, Robert J; Yakar, Shoshana
Use of recombinant insulin-like growth factor 1 (IGF-1) as a treatment for primary IGF-1 deficiency in children has become increasingly common. When untreated, primary IGF-1 deficiency may lead to a range of metabolic disorders, including lipid abnormalities, insulin resistance, and decreased bone density. To date, results of this therapy are considered encouraging; however, our understanding of the role played by IGF-1 during development remains limited. Studies on long-term treatment with recombinant IGF-1 in both children and animals are few. Here, we used two novel transgenic mouse strains to test the long-term effects of elevated circulating IGF-1 on body size and skeletal development. Overexpression of the rat igf1 transgene in livers of mice with otherwise normal IGF-1 expression (HIT mice) resulted in approximately threefold increases in serum IGF-1 levels throughout growth, as well as greater body mass and enhanced skeletal size, architecture, and mechanical properties. When the igf1 transgene was overexpressed in livers of igf1 null mice (KO-HIT), the comparably elevated serum IGF-1 failed to overcome growth and skeletal deficiencies during neonatal and early postnatal growth. However, between 4 and 16 weeks of age, increased serum IGF-1 fully compensated for the absence of locally produced IGF-1 because body weights and lengths of KO-HIT mice became comparable with controls. Furthermore, micro-computed tomography (microCT) analysis revealed that early deficits in skeletal structure of KO-HIT mice were restored to control levels by adulthood. Our data indicate that in the absence of tissue igf1 gene expression, maintaining long-term elevations in serum IGF-1 is sufficient to establish normal body size, body composition, and both skeletal architecture and mechanical function.
PMCID:3153133
PMID: 20200935
ISSN: 0884-0431
CID: 160979
Growth hormone regulates the balance between bone formation and bone marrow adiposity
Menagh, Philip J; Turner, Russell T; Jump, Donald B; Wong, Carmen P; Lowry, Malcolm B; Yakar, Shoshana; Rosen, Clifford J; Iwaniec, Urszula T
Cancellous bone decreases and bone marrow fat content increases with age. Osteoblasts and adipocytes are derived from a common precursor, and growth hormone (GH), a key hormone in integration of energy metabolism, regulates the differentiation and function of both cell lineages. Since an age-related decline in GH is associated with bone loss, we investigated the relationship between GH and bone marrow adiposity in hypophysectomized (HYPOX) rats and in mice with defects in GH signaling. HYPOX dramatically reduced body weight gain, bone growth and mineralizing perimeter, serum insulin-like growth factor 1 (IGF-1) levels, and mRNA levels for IGF-1 in liver and bone. Despite reduced body mass and adipocyte precursor pool size, HYPOX resulted in a dramatic increase in bone lipid levels, as reflected by increased bone marrow adiposity and bone triglyceride and cholesterol content. GH replacement normalized bone marrow adiposity and precursor pool size, as well as mineralizing perimeter in HYPOX rats. In contrast, 17beta -estradiol, IGF-1, thyroxine, and cortisone were ineffective. Parathyroid hormone (PTH) reversed the inhibitory effects of HYPOX on mineralizing perimeter but had no effect on adiposity. Finally, bone marrow adiposity was increased in mice deficient in GH and IGF-1 but not in mice deficient in serum IGF-1. Taken together, our findings indicate that the reciprocal changes in bone and fat mass in GH signaling-deficient rodents are not directly coupled with one another. Rather, GH enhances adipocyte as well as osteoblast precursor pool size. However, GH increases osteoblast differentiation while suppressing bone marrow lipid accumulation.
PMCID:3153330
PMID: 19821771
ISSN: 0884-0431
CID: 160980
Insulin-sensitizing therapy attenuates type 2 diabetes-mediated mammary tumor progression
Fierz, Yvonne; Novosyadlyy, Ruslan; Vijayakumar, Archana; Yakar, Shoshana; LeRoith, Derek
OBJECTIVE: Type 2 diabetes increases breast cancer risk and mortality, and hyperinsulinemia has been identified as a major factor linking these two diseases. Thus, we hypothesized that pharmacological reduction of elevated insulin levels would attenuate type 2 diabetes-mediated mammary tumor progression. RESEARCH DESIGN AND METHODS: We studied mammary tumor development in MKR(+/+) mice, a nonobese, hyperinsulinemic mouse model of type 2 diabetes. MKR(+/+) mice were either crossed with mice expressing the polyoma virus middle T oncogene specifically in the mammary gland or inoculated orthotopically with the mouse mammary tumor cell lines Met-1 and MCNeuA. MKR(+/+) or control mice harboring tumors were treated with CL-316243, a specific beta3-adrenergic receptor agonist, which sensitizes insulin action but has no direct effect on the mouse mammary epithelium or Met-1 and MCNeuA cells. RESULTS: CL-316243 treatment significantly reduced the elevated insulin levels in MKR(+/+) mice and, as a consequence, attenuated mammary tumor progression in the three tumor models tested. This effect was accompanied by reductions in phosphorylation of insulin and IGF-I receptors in transformed mammary tissue. CONCLUSIONS: Insulin-sensitizing treatment is sufficient to abrogate type 2 diabetes-mediated mammary tumor progression. Therefore, early administration of insulin-sensitizing therapy may reduce breast cancer risk and mortality in patients with type 2 diabetes.
PMCID:2828655
PMID: 19959755
ISSN: 0012-1797
CID: 160981
The insulin-like growth factor-1 binding protein acid-labile subunit alters mesenchymal stromal cell fate
Fritton, J Christopher; Kawashima, Yuki; Mejia, Wilson; Courtland, Hayden-Williams; Elis, Sebastien; Sun, Hui; Wu, Yinjgie; Rosen, Clifford J; Clemmons, David; Yakar, Shoshana
Age-related osteoporosis is accompanied by an increase in marrow adiposity and a reduction in serum insulin-like growth factor-1 (IGF-1) and the binding proteins that stabilize IGF-1. To determine the relationship between these proteins and bone marrow adiposity, we evaluated the adipogenic potential of marrow-derived mesenchymal stromal cells (MSCs) from mice with decreased serum IGF-1 due to knockdown of IGF-1 production by the liver or knock-out of the binding proteins. We employed 10-16-week-old, liver-specific IGF-1-deficient, IGFBP-3 knock-out (BP3KO) and acid-labile subunit knock-out (ALSKO) mice. We found that expression of the late adipocyte differentiation marker peroxisome proliferator-activated receptor gamma was increased in marrow isolated from ALSKO mice. When induced with adipogenic media, MSC cultures from ALSKO mice revealed a significantly greater number of differentiated adipocytes compared with controls. MSCs from ALSKO mice also exhibited decreased alkaline-phosphatase positive colony size in cultures that were stimulated with osteoblast differentiation media. These osteoblast-like cells from ALSKO mice failed to induce osteoclastogenesis of control cells in co-culture assays, indicating that impairment of IGF-1 complex formation with ALS in bone marrow alters cell fate, leading to increased adipogenesis.
PMCID:2836075
PMID: 20007694
ISSN: 0021-9258
CID: 160982
Biological effects of growth hormone on carbohydrate and lipid metabolism
Vijayakumar, Archana; Novosyadlyy, Ruslan; Wu, Yingjie; Yakar, Shoshana; LeRoith, Derek
This review will summarize the metabolic effects of growth hormone (GH) on the adipose tissue, liver, and skeletal muscle with focus on lipid and carbohydrate metabolism. The metabolic effects of GH predominantly involve the stimulation of lipolysis in the adipose tissue resulting in an increased flux of free fatty acids (FFAs) into the circulation. In the muscle and liver, GH stimulates triglyceride (TG) uptake, by enhancing lipoprotein lipase (LPL) expression, and its subsequent storage. The effects of GH on carbohydrate metabolism are more complicated and may be mediated indirectly via the antagonism of insulin action. Furthermore, GH has a net anabolic effect on protein metabolism although the molecular mechanisms of its actions are not completely understood. The major questions that still remain to be answered are (i) What are the molecular mechanisms by which GH regulates substrate metabolism? (ii) Does GH affect substrate metabolism directly or indirectly via IGF-1 or antagonism of insulin action?
PMCID:2815161
PMID: 19800274
ISSN: 1096-6374
CID: 160983
Growth hormone protects against ovariectomy-induced bone loss in states of low circulating insulin-like growth factor (IGF-1)
Fritton, J Christopher; Emerton, Kelly B; Sun, Hui; Kawashima, Yuki; Mejia, Wilson; Wu, Yingjie; Rosen, Clifford J; Panus, David; Bouxsein, Mary; Majeska, Robert J; Schaffler, Mitchell B; Yakar, Shoshana
Early after estrogen loss in postmenopausal women and ovariectomy (OVX) of animals, accelerated endosteal bone resorption leads to marrow expansion of long bone shafts that reduce mechanical integrity. Both growth hormone (GH) and insulin-like growth factor (IGF-1) are potent regulators of bone remodeling processes. To investigate the role of the GH/IGF-1 axis with estrogen deficiency, we used the liver IGF-1-deficient (LID) mouse. Contrary to deficits in controls, OVX of LID mice resulted in maintenance of cortical bone mechanical integrity primarily owing to an enhanced periosteal expansion affect on cross-sectional structure (total area and cortical width). The serum balance in LID that favors GH over IGF-1 diminished the effects of ablated ovarian function on numbers of osteoclast precursors in the marrow and viability of osteocytes within the cortical matrix and led to less endosteal resorption in addition to greater periosteal bone formation. Interactions between estrogen and the GH/IGF-1 system as related to bone remodeling provide a pathway to minimize degeneration of bone tissue structure and osteoporotic fracture.
PMCID:3153382
PMID: 19619004
ISSN: 0884-0431
CID: 160984