Searched for: school:SOM
Department/Unit:Neuroscience Institute
The D614G mutation in SARS-CoV-2 Spike increases transduction of multiple human cell types [PrePrint]
Daniloski, Zharko; Guo, Xinyi; Sanjana, Neville E
Recently, a novel isolate of the SARS-CoV-2 virus carrying a point mutation in the Spike protein (D614G) has emerged and rapidly surpassed others in prevalence, including the original SARS-CoV-2 isolate from Wuhan, China. This Spike variant is a defining feature of the most prevalent clade (A2a) of SARS-CoV-2 genomes worldwide. Using phylogenomic data, several groups have proposed that the D614G variant may confer increased transmissibility leading to positive selection, while others have claimed that currently available evidence does not support positive selection. Furthermore, in the A2a clade, this mutation is in linkage disequilibrium with a ORF1b protein variant (P314L), making it difficult to discern the functional significance of the Spike D614G mutation from population genetics alone. Here, we perform site-directed mutagenesis on a human codon-optimized spike protein to introduce the D614G variant and produce SARS-CoV-2-pseudotyped lentiviral particles (S-Virus) with this variant and with D614 Spike. We show that in multiple cell lines, including human lung epithelial cells, that S-Virus carrying the D614G mutation is up to 8-fold more effective at transducing cells than wild-type S-Virus. This provides functional evidence that the D614G mutation in the Spike protein increases transduction of human cells. Further we show that the G614 variant is more resistant to cleavage in vitro and in human cells, which may suggest a possible mechanism for the increased transduction. Given that several vaccines in development and in clinical trials are based on the initial (D614) Spike sequence, this result has important implications for the efficacy of these vaccines in protecting against this recent and highly-prevalent SARS-CoV-2 isolate.
PMCID:7310625
PMID: 32587969
ISSN: 2692-8205
CID: 4493582
Publisher Correction: Propagation of hippocampal ripples to the neocortex by way of a subiculum-retrosplenial pathway
Nitzan, Noam; McKenzie, Sam; Beed, Prateep; English, Daniel Fine; Oldani, Silvia; Tukker, John J; Buzsáki, György; Schmitz, Dietmar
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
PMID: 32636375
ISSN: 2041-1723
CID: 4517312
Author Correction: Connexin43 expression in bone marrow derived cells contributes to the electrophysiological properties of cardiac scar tissue
Vasquez, Carolina; Mezzano, Valeria; Kessler, Newman; Swardh, Freja; Ernestad, Desiree; Mahoney, Vanessa M; Hanna, John; Morley, Gregory E
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
PMID: 32632225
ISSN: 2045-2322
CID: 4545862
Atypical age-related changes in cortical thickness in autism spectrum disorder
Nunes, Adonay S; Vakorin, Vasily A; Kozhemiako, Nataliia; Peatfield, Nicholas; Ribary, Urs; Doesburg, Sam M
Recent longitudinal neuroimaging and neurophysiological studies have shown that tracking relative age-related changes in neural signals, rather than a static snapshot of a neural measure, could offer higher sensitivity for discriminating typically developing (TD) individuals from those with autism spectrum disorder (ASD). It is not clear, however, which aspects of age-related changes (trajectories) would be optimal for identifying atypical brain development in ASD. Using a large cross-sectional data set (Autism Brain Imaging Data Exchange [ABIDE] repository; releases I and II), we aimed to explore age-related changes in cortical thickness (CT) in TD and ASD populations (age range 6-30Â years old). Cortical thickness was estimated from T1-weighted MRI images at three scales of spatial coarseness (three parcellations with different numbers of regions of interest). For each parcellation, three polynomial models of age-related changes in CT were tested. Specifically, to characterize alterations in CT trajectories, we compared the linear slope, curvature, and aberrancy of CT trajectories across experimental groups, which was estimated using linear, quadratic, and cubic polynomial models, respectively. Also, we explored associations between age-related changes with ASD symptomatology quantified as the Autism Diagnostic Observation Schedule (ADOS) scores. While no overall group differences in cortical thickness were observed across the entire age range, ASD and TD populations were different in terms of age-related changes, which were located primarily in frontal and tempo-parietal areas. These atypical age-related changes were also associated with ADOS scores in the ASD group and used to predict ASD from TD development. These results indicate that the curvature is the most reliable feature for localizing brain areas developmentally atypical in ASD with a more pronounced effect with symptomatology and is the most sensitive in predicting ASD development.
PMCID:7338512
PMID: 32632150
ISSN: 2045-2322
CID: 4518822
Extrinsic activin signaling cooperates with an intrinsic temporal program to increase mushroom body neuronal diversity
Rossi, Anthony M; Desplan, Claude
Temporal patterning of neural progenitors leads to the sequential production of diverse neurons. To understand how extrinsic cues influence intrinsic temporal programs, we studied Drosophila mushroom body progenitors (neuroblasts) that sequentially produce only three neuronal types: γ, then α'β', followed by αβ. Opposing gradients of two RNA-binding proteins Imp and Syp comprise the intrinsic temporal program. Extrinsic activin signaling regulates the production of α'β' neurons but whether it affects the intrinsic temporal program was not known. We show that the activin ligand Myoglianin from glia regulates the temporal factor Imp in mushroom body neuroblasts. Neuroblasts missing the activin receptor Baboon have a delayed intrinsic program as Imp is higher than normal during the α'β' temporal window, causing the loss of α'β' neurons, a decrease in αβ neurons, and a likely increase in γ neurons, without affecting the overall number of neurons produced. Our results illustrate that an extrinsic cue modifies an intrinsic temporal program to increase neuronal diversity.
PMCID:7365662
PMID: 32628110
ISSN: 2050-084x
CID: 4606292
Rolf Huisgen (1920-2020)
Trauner, Dirk
PMID: 32488178
ISSN: 1552-4469
CID: 4482012
Magnetization transfer in magnetic resonance fingerprinting
Hilbert, Tom; Xia, Ding; Block, Kai Tobias; Yu, Zidan; Lattanzi, Riccardo; Sodickson, Daniel K; Kober, Tobias; Cloos, Martijn A
PURPOSE/OBJECTIVE:To study the effects of magnetization transfer (MT, in which a semi-solid spin pool interacts with the free pool), in the context of magnetic resonance fingerprinting (MRF). METHODS: RESULTS:values (~47 ms vs. ~35 ms) can be observed in white matter if MT is accounted for. CONCLUSION/CONCLUSIONS:with MRF. A model that encompasses MT effects can improve the accuracy of estimated relaxation parameters and allows quantification of the fractional pool size.
PMID: 31762101
ISSN: 1522-2594
CID: 4215582
Discovery and validation of biomarkers to aid the development of safe and effective pain therapeutics: challenges and opportunities
Davis, Karen D; Aghaeepour, Nima; Ahn, Andrew H; Angst, Martin S; Borsook, David; Brenton, Ashley; Burczynski, Michael E; Crean, Christopher; Edwards, Robert; Gaudilliere, Brice; Hergenroeder, Georgene W; Iadarola, Michael J; Iyengar, Smriti; Jiang, Yunyun; Kong, Jiang-Ti; Mackey, Sean; Saab, Carl Y; Sang, Christine N; Scholz, Joachim; Segerdahl, Marta; Tracey, Irene; Veasley, Christin; Wang, Jing; Wager, Tor D; Wasan, Ajay D; Pelleymounter, Mary Ann
Pain medication plays an important role in the treatment of acute and chronic pain conditions, but some drugs, opioids in particular, have been overprescribed or prescribed without adequate safeguards, leading to an alarming rise in medication-related overdose deaths. The NIH Helping to End Addiction Long-term (HEAL) Initiative is a trans-agency effort to provide scientific solutions to stem the opioid crisis. One component of the initiative is to support biomarker discovery and rigorous validation in collaboration with industry leaders to accelerate high-quality clinical research into neurotherapeutics and pain. The use of objective biomarkers and clinical trial end points throughout the drug discovery and development process is crucial to help define pathophysiological subsets of pain, evaluate target engagement of new drugs and predict the analgesic efficacy of new drugs. In 2018, the NIH-led Discovery and Validation of Biomarkers to Develop Non-Addictive Therapeutics for Pain workshop convened scientific leaders from academia, industry, government and patient advocacy groups to discuss progress, challenges, gaps and ideas to facilitate the development of biomarkers and end points for pain. The outcomes of this workshop are outlined in this Consensus Statement.
PMID: 32541893
ISSN: 1759-4766
CID: 4496692
Distinct subnetworks of the thalamic reticular nucleus
Li, Yinqing; Lopez-Huerta, Violeta G; Adiconis, Xian; Levandowski, Kirsten; Choi, Soonwook; Simmons, Sean K; Arias-Garcia, Mario A; Guo, Baolin; Yao, Annie Y; Blosser, Timothy R; Wimmer, Ralf D; Aida, Tomomi; Atamian, Alexander; Naik, Tina; Sun, Xuyun; Bi, Dasheng; Malhotra, Diya; Hession, Cynthia C; Shema, Reut; Gomes, Marcos; Li, Taibo; Hwang, Eunjin; Krol, Alexandra; Kowalczyk, Monika; Peça, João; Pan, Gang; Halassa, Michael M; Levin, Joshua Z; Fu, Zhanyan; Feng, Guoping
The thalamic reticular nucleus (TRN), the major source of thalamic inhibition, regulates thalamocortical interactions that are critical for sensory processing, attention and cognition1-5. TRN dysfunction has been linked to sensory abnormality, attention deficit and sleep disturbance across multiple neurodevelopmental disorders6-9. However, little is known about the organizational principles that underlie its divergent functions. Here we performed an integrative study linking single-cell molecular and electrophysiological features of the mouse TRN to connectivity and systems-level function. We found that cellular heterogeneity in the TRN is characterized by a transcriptomic gradient of two negatively correlated gene-expression profiles, each containing hundreds of genes. Neurons in the extremes of this transcriptomic gradient express mutually exclusive markers, exhibit core or shell-like anatomical structure and have distinct electrophysiological properties. The two TRN subpopulations make differential connections with the functionally distinct first-order and higher-order thalamic nuclei to form molecularly defined TRN-thalamus subnetworks. Selective perturbation of the two subnetworks in vivo revealed their differential role in regulating sleep. In sum, our study provides a comprehensive atlas of TRN neurons at single-cell resolution and links molecularly defined subnetworks to the functional organization of thalamocortical circuits.
PMID: 32699411
ISSN: 1476-4687
CID: 4532532
Electrical coupling controls dimensionality and chaotic firing of inferior olive neurons
Hoang, Huu; Lang, Eric J; Hirata, Yoshito; Tokuda, Isao T; Aihara, Kazuyuki; Toyama, Keisuke; Kawato, Mitsuo; Schweighofer, Nicolas
We previously proposed, on theoretical grounds, that the cerebellum must regulate the dimensionality of its neuronal activity during motor learning and control to cope with the low firing frequency of inferior olive neurons, which form one of two major inputs to the cerebellar cortex. Such dimensionality regulation is possible via modulation of electrical coupling through the gap junctions between inferior olive neurons by inhibitory GABAergic synapses. In addition, we previously showed in simulations that intermediate coupling strengths induce chaotic firing of inferior olive neurons and increase their information carrying capacity. However, there is no in vivo experimental data supporting these two theoretical predictions. Here, we computed the levels of synchrony, dimensionality, and chaos of the inferior olive code by analyzing in vivo recordings of Purkinje cell complex spike activity in three different coupling conditions: carbenoxolone (gap junctions blocker), control, and picrotoxin (GABA-A receptor antagonist). To examine the effect of electrical coupling on dimensionality and chaotic dynamics, we first determined the physiological range of effective coupling strengths between inferior olive neurons in the three conditions using a combination of a biophysical network model of the inferior olive and a novel Bayesian model averaging approach. We found that effective coupling co-varied with synchrony and was inversely related to the dimensionality of inferior olive firing dynamics, as measured via a principal component analysis of the spike trains in each condition. Furthermore, for both the model and the data, we found an inverted U-shaped relationship between coupling strengths and complexity entropy, a measure of chaos for spiking neural data. These results are consistent with our hypothesis according to which electrical coupling regulates the dimensionality and the complexity in the inferior olive neurons in order to optimize both motor learning and control of high dimensional motor systems by the cerebellum.
PMID: 32730255
ISSN: 1553-7358
CID: 4560612