Searched for: school:SOM
Department/Unit:Neuroscience Institute
Optical Control of Cytokine Production Using Photoswitchable Galactosylceramides
Trauner, Dirk; Hartrampf, Nina; Seki, Toshiyuki; Baumann, Andreas; Watson, Philip; Hoffmann-Röder, Anja; Tsuji, Moriya; Veprek, Nynke; Hetzler, Belinda
Alpha-Galactosylceramides are glycosphingolipids that show promise in cancer immunotherapy. After presentation by CD1d they activate natural killer T cells (NKT), which results in the production of a variety of pro-inflammatory and immunomodulatory cytokines. Here we report the synthesis and biological evaluation of photochromic derivatives of KRN-7000, the activity of which can be modulated with light. Based on established structure-activity relationships, we designed photoswitchable analogs of this glycolipid that control the production of pro-inflammatory cytokines, such as IFN-γ. The azobenzene derivative α-GalACer-4 proved to be more potent than KRN-7000 itself when activated with 380 nm light. Photolipids of this type could improve our mechanistic understanding of cytokine production and could open new directions in photoimmunotherapy.
PMID: 31788876
ISSN: 1521-3765
CID: 4217922
Computational Markers of Risky Decision-making for Identification of Temporal Windows of Vulnerability to Opioid Use in a Real-world Clinical Setting
Konova, Anna B; Lopez-Guzman, Silvia; Urmanche, Adelya; Ross, Stephen; Louie, Kenway; Rotrosen, John; Glimcher, Paul W
Importance/UNASSIGNED:Opioid addiction is a major public health problem. Despite availability of evidence-based treatments, relapse and dropout are common outcomes. Efforts aimed at identifying reuse risk and gaining more precise understanding of the mechanisms conferring reuse vulnerability are needed. Objective/UNASSIGNED:To use tools from computational psychiatry and decision neuroscience to identify changes in decision-making processes preceding opioid reuse. Design, Setting, and Participants/UNASSIGNED:A cohort of individuals with opioid use disorder were studied longitudinally at a community-based treatment setting for up to 7 months (1-15 sessions per person). At each session, patients completed a risky decision-making task amenable to computational modeling and standard clinical assessments. Time-lagged mixed-effects logistic regression analyses were used to assess the likelihood of opioid use between sessions (t to t + 1; within the subsequent 1-4 weeks) from data acquired at the current session (t). A cohort of control participants completed similar procedures (1-5 sessions per person), serving both as a baseline comparison group and an independent sample in which to assess measurement test-retest reliability. Data were analyzed between January 1, 2018, and September 5, 2019. Main Outcomes and Measures/UNASSIGNED:Two individual model-based behavioral markers were derived from the task completed at each session, capturing a participant's current tolerance of known risks and ambiguity (partially unknown risks). Current anxiety, craving, withdrawal, and nonadherence were assessed via interview and clinic records. Opioid use was ascertained from random urine toxicology tests and self-reports. Results/UNASSIGNED:Seventy patients (mean [SE] age, 44.7 [1.3] years; 12 women and 58 men [82.9% male]) and 55 control participants (mean [SE] age, 42.4 [1.5] years; 13 women and 42 men [76.4% male]) were included. Of the 552 sessions completed with patients (mean [SE], 7.89 [0.59] sessions per person), 252 (45.7%) directly preceded opioid use events (mean [SE], 3.60 [0.44] sessions per person). From the task parameters, only ambiguity tolerance was significantly associated with increased odds of prospective opioid use (adjusted odds ratio, 1.37 [95% CI, 1.07-1.76]), indicating patients were more tolerant specifically of ambiguous risks prior to these use events. The association of ambiguity tolerance with prospective use was independent of established clinical factors (adjusted odds ratio, 1.29 [95% CI, 1.01-1.65]; P = .04), such that a model combining these factors explained more variance in reuse risk. No significant differences in ambiguity tolerance were observed between patients and control participants, who completed 197 sessions (mean [SE], 3.58 [0.21] sessions per person); however, patients were more tolerant of known risks (B = 0.56 [95% CI, 0.05-1.07]). Conclusions and Relevance/UNASSIGNED:Computational approaches can provide mechanistic insights about the cognitive factors underlying opioid reuse vulnerability and may hold promise for clinical use.
PMID: 31812982
ISSN: 2168-6238
CID: 4233972
Soft-Label Guided Semi-Supervised Learning for Bi-Ventricle Segmentation in Cardiac Cine MRI
Chapter by: Chang, Qi; Yan, Zhennan; Lou, Yixuan; Axel, Leon; Metaxas, Dimitris N.
in: Proceedings - International Symposium on Biomedical Imaging by
[S.l.] : IEEE Computer Societyhelp@computer.org, 2020
pp. 1752-1755
ISBN: 9781538693308
CID: 4508742
Prevention of connexin-43 remodeling protects against Duchenne muscular dystrophy cardiomyopathy
Himelman, Eric; Lillo, Mauricio A; Nouet, Julie; Gonzalez, J Patrick; Zhao, Qingshi; Xie, Lai-Hua; Li, Hong; Liu, Tong; Wehrens, Xander Ht; Lampe, Paul D; Fishman, Glenn I; Shirokova, Natalia; Contreras, Jorge E; Fraidenraich, Diego
Aberrant expression of the cardiac gap junction protein connexin-43 (Cx43) has been suggested as playing a role in the development of cardiac disease in the mdx mouse model of Duchenne muscular dystrophy (DMD); however, a mechanistic understanding of this association is lacking. Here, we identified a reduction of phosphorylation of Cx43 serines S325/S328/S330 in human and mouse DMD hearts. We hypothesized that hypophosphorylation of Cx43 serine-triplet triggers pathological Cx43 redistribution to the lateral sides of cardiomyocytes (remodeling). Therefore, we generated knockin mdx mice in which the Cx43 serine-triplet was replaced with either phospho-mimicking glutamic acids (mdxS3E) or nonphosphorylatable alanines (mdxS3A). The mdxS3E, but not mdxS3A, mice were resistant to Cx43 remodeling, with a corresponding reduction of Cx43 hemichannel activity. MdxS3E cardiomyocytes displayed improved intracellular Ca2+ signaling and a reduction of NADPH oxidase 2 (NOX2)/ROS production. Furthermore, mdxS3E mice were protected against inducible arrhythmias, related lethality, and the development of cardiomyopathy. Inhibition of microtubule polymerization by colchicine reduced both NOX2/ROS and oxidized CaMKII, increased S325/S328/S330 phosphorylation, and prevented Cx43 remodeling in mdx hearts. Together, these results demonstrate a mechanism of dystrophic Cx43 remodeling and suggest that targeting Cx43 may be a therapeutic strategy for preventing heart dysfunction and arrhythmias in DMD patients.
PMCID:7108916
PMID: 31910160
ISSN: 1558-8238
CID: 4386202
Type I interferon response drives neuroinflammation and synapse loss in Alzheimer disease
Roy, Ethan R; Wang, Baiping; Wan, Ying-Wooi; Chiu, Gabriel; Cole, Allysa; Yin, Zhuoran; Propson, Nicholas E; Xu, Yin; Jankowsky, Joanna L; Liu, Zhandong; Lee, Virginia M-Y; Trojanowski, John Q; Ginsberg, Stephen D; Butovsky, Oleg; Zheng, Hui; Cao, Wei
Type I interferon (IFN) is a key cytokine that curbs viral infection and cell malignancy. Previously, we demonstrated a potent IFN immunogenicity of nucleic acid-containing (NA-containing) amyloid fibrils in the periphery. Here, we investigated whether IFN is associated with β-amyloidosis inside the brain and contributes to neuropathology. An IFN-stimulated gene (ISG) signature was detected in the brains of multiple murine Alzheimer disease (AD) models, a phenomenon also observed in WT mouse brain challenged with generic NA-containing amyloid fibrils. In vitro, microglia innately responded to NA-containing amyloid fibrils. In AD models, activated ISG-expressing microglia exclusively surrounded NA+ amyloid β plaques, which accumulated in an age-dependent manner. Brain administration of rIFN-β resulted in microglial activation and complement C3-dependent synapse elimination in vivo. Conversely, selective IFN receptor blockade effectively diminished the ongoing microgliosis and synapse loss in AD models. Moreover, we detected activated ISG-expressing microglia enveloping NA-containing neuritic plaques in postmortem brains of patients with AD. Gene expression interrogation revealed that IFN pathway was grossly upregulated in clinical AD and significantly correlated with disease severity and complement activation. Therefore, IFN constitutes a pivotal element within the neuroinflammatory network of AD and critically contributes to neuropathogenic processes.
PMCID:7108898
PMID: 31917687
ISSN: 1558-8238
CID: 4386212
Reply: Interactions of interictal epileptic discharges with sleep slow waves and spindles [Letter]
Dahal, Prawesh; Ghani, Naureen; Flinker, Adeen; Dugan, Patricia; Friedman, Daniel; Doyle, Werner; Devinsky, Orrin; Khodagholy, Dion; Gelinas, Jennifer N
PMID: 32211754
ISSN: 1460-2156
CID: 4357922
The role of affibody in aged mouse model of alzheimer's disease [Meeting Abstract]
Greenberg, J H; Lindberg, H; Orozco, J; Vama, B; Habbat, H; Loflom, J; Stahl, S; Mejouate, O; Wisniewski, T; Boutajangout, A
Background: Alzheimer's disease (AD) is a progressive neurodegenerative disease that currently accounts for over 70% of cases of dementia in adults over 65 worldwide, and is the only cause of death among the top ten with no effective treatments. Clinically, AD is characterized by progressive deterioration in memory and other areas of cognitive function. Neuropathologically, the disease is characterized by extracellular aggregations of amyloid-B (AB) and intraneuronal neurofibrillary tangles (NFTS) composed of abnormally phosphorylated tau, causing progressive neuronal death. The aim of this study was to investigate whether the affibody ZSYM73-ABD (a portion of the active antibody molecule) can reverse AD pathology in an AD mouse model, without also causing significant neuroinflammation and/or microhemorrhage.
Method(s): APP/PS1 double transgenic mice were injected twice weekly with either ZSYM-ABD or a non-AB specific affibody, Ztaq2, as a control. Mice underwent behavioral testing and their brains were then sacrificed for immunohistochemistry.
Result(s): Semi-quantitative analysis of amyloid burden, performed using 6E10/4G8 antibodies, showed a statistically significant reduction in amyloid burden in the hippocampus, and a trend towards reduction in amyloid burden in the cortex. Inflammation was assessed using GFAP and Iba1(markers of gliosis) which showed a statistically significant reduction of GFAP in the cortex and in the hippocampus, and a slight reduction of microgliosis in ZSYM73-ABD affibody treated mice. Finally, mice treated with ZSYM73-ABD performed significantly better on a novel object recognition task than control mice, suggesting a correlation between the histological findings above and improvement in cognitive function.
Conclusion(s): In conclusion, this study demonstrates that passive immunization with an affibody molecule improves cognitive function and significantly decreases amyloid burden in the hippocampus of a transgenic mouse model of AD, without inducing inflammation. This has potential implications for treatment of AD in humans
EMBASE:633776658
ISSN: 1532-5415
CID: 4757572
Dysfunction of cortical GABAergic neurons leads to sensory hyper-reactivity in a Shank3 mouse model of ASD
Chen, Qian; Deister, Christopher A; Gao, Xian; Guo, Baolin; Lynn-Jones, Taylor; Chen, Naiyan; Wells, Michael F; Liu, Runpeng; Goard, Michael J; Dimidschstein, Jordane; Feng, Shijing; Shi, Yiwu; Liao, Weiping; Lu, Zhonghua; Fishell, Gord; Moore, Christopher I; Feng, Guoping
Hyper-reactivity to sensory input is a common and debilitating symptom in individuals with autism spectrum disorders (ASD), but the neural basis underlying sensory abnormality is not completely understood. Here we examined the neural representations of sensory perception in the neocortex of a Shank3B-/- mouse model of ASD. Male and female Shank3B-/- mice were more sensitive to relatively weak tactile stimulation in a vibrissa motion detection task. In vivo population calcium imaging in vibrissa primary somatosensory cortex (vS1) revealed increased spontaneous and stimulus-evoked firing in pyramidal neurons but reduced activity in interneurons. Preferential deletion of Shank3 in vS1 inhibitory interneurons led to pyramidal neuron hyperactivity and increased stimulus sensitivity in the vibrissa motion detection task. These findings provide evidence that cortical GABAergic interneuron dysfunction plays a key role in sensory hyper-reactivity in a Shank3 mouse model of ASD and identify a potential cellular target for exploring therapeutic interventions.
PMID: 32123378
ISSN: 1546-1726
CID: 4340572
Centrosome anchoring regulates progenitor properties and cortical formation
Shao, Wei; Yang, Jiajun; He, Ming; Yu, Xiang-Yu; Lee, Choong Heon; Yang, Zhaohui; Joyner, Alexandra L; Anderson, Kathryn V; Zhang, Jiangyang; Tsou, Meng-Fu Bryan; Shi, Hang; Shi, Song-Hai
Radial glial progenitor cells (RGPs) are the major neural progenitor cells that generate neurons and glia in the developing mammalian cerebral cortex1-4. In RGPs, the centrosome is positioned away from the nucleus at the apical surface of the ventricular zone of the cerebral cortex5-8. However, the molecular basis and precise function of this distinctive subcellular organization of the centrosome are largely unknown. Here we show in mice that anchoring of the centrosome to the apical membrane controls the mechanical properties of cortical RGPs, and consequently their mitotic behaviour and the size and formation of the cortex. The mother centriole in RGPs develops distal appendages that anchor it to the apical membrane. Selective removal of centrosomal protein 83 (CEP83) eliminates these distal appendages and disrupts the anchorage of the centrosome to the apical membrane, resulting in the disorganization of microtubules and stretching and stiffening of the apical membrane. The elimination of CEP83 also activates the mechanically sensitive yes-associated protein (YAP) and promotes the excessive proliferation of RGPs, together with a subsequent overproduction of intermediate progenitor cells, which leads to the formation of an enlarged cortex with abnormal folding. Simultaneous elimination of YAP suppresses the cortical enlargement and folding that is induced by the removal of CEP83. Together, these results indicate a previously unknown role of the centrosome in regulating the mechanical features of neural progenitor cells and the size and configuration of the mammalian cerebral cortex.
PMID: 32238932
ISSN: 1476-4687
CID: 4370412
Prevalence of low molecular weight proteinuria and Dent disease 1 CLCN5 mutations in proteinuric cohorts
Beara-Lasic, Lada; Cogal, Andrea; Mara, Kristin; Enders, Felicity; Mehta, Ramila A; Haskic, Zejfa; Furth, Susan L; Trachtman, Howard; Scheinman, Steven J; Milliner, Dawn S; Goldfarb, David S; Harris, Peter C; Lieske, John C
BACKGROUND:Dent disease type 1 (DD1) is a rare X-linked disorder caused mainly by CLCN5 mutations. Patients may present with nephrotic-range proteinuria leading to erroneous diagnosis of focal segmental glomerulosclerosis (FSGS) and unnecessary immunosuppressive treatments. METHODS:M/TP, and A/TP from the CKiD cohort were compared with DD1 and DC. RESULTS:M/Cr of ≥ 120 mg/g (> 13.6 mg/mmol) creatinine were good screens for Dent disease. CONCLUSIONS:M/Cr ≥ 120 mg/g (> 13.6 mg/mmol) had the highest sensitivity and specificity when differentiating DD1 and studied CKiD populations.
PMID: 30852663
ISSN: 1432-198x
CID: 3732872