Searched for: school:SOM
Department/Unit:Cell Biology
Neuropeptide Y and cannabinoids interaction in the amygdala after exposure to shock and reminders model of PTSD
Maymon, Neta; Mizrachi Zer-Aviv, Tomer; Sabban, Esther L; Akirav, Irit
Modulation of cannabinoid and neuropeptide Y (NPY) receptors may offer therapeutic benefits for post-traumatic stress disorder (PTSD). In this study, we aimed to investigate the functional interaction between these systems in the basolateral amygdala (BLA) in a rat model of PTSD. Rats were exposed to the shock and reminders model of PTSD and tested for hyper arousal/PTSD- and depression-like behaviors 3 weeks later. Immediately after shock exposure rats were microinjected into the BLA with URB597, a selective inhibitor of fatty acid amide hydrolase (FAAH) that increases the levels of the endocannabinoid anandamide or with the NPY1 receptor agonist Leu31,Pro34-NPY (Leu). Intra-BLA URB597 prevented the shock/reminders-induced PTSD- behaviors (extinction, startle) and depression-behaviors (despair, social impairments). These preventing effects of URB597 on PTSD- and depression-like behaviors were shown to be mostly mediated by cannabinoid CB1 and NPY1 receptors, as they were blocked when URB597 was co-administered with a low dose of a CB1 or NPY1 receptor antagonist. Similarly, intra-BLA Leu prevented development of all the behaviors. Interestingly, a CB1 antagonist prevented the effects of Leu on despair and social behavior, but not the effects on extinction and startle. Moreover, exposure to shock and reminders upregulated CB1 and NPY1 receptors in the BLA and infralimbic prefrontal cortex and this upregulation was restored to normal with intra-BLA URB597 or Leu. The findings suggest that the functional interaction between the eCB and NPY1 systems is complex and provide a rationale for exploring novel therapeutic strategies that target the cannabinoid and NPY systems for stress-related diseases.
PMID: 31622603
ISSN: 1873-7064
CID: 4146312
Adult hair follicles keep oncogenic growth in check [Comment]
Gay, Denise; Ito, Mayumi
Recent research shows that potentially cancerous, somatic mutations can reside in normal cells. Pineda et al. (2019. J. Cell Biol. https://doi.org/10.1083/jcb.201907178) report on a unique management technique by hair follicle stem cells to evade tumorigenesis.
PMID: 31537713
ISSN: 1540-8140
CID: 4156262
CSF-1 controls cerebellar microglia and is required for motor function and social interaction
Kana, Veronika; Desland, Fiona A; Casanova-Acebes, Maria; Ayata, Pinar; Badimon, Ana; Nabel, Elisa; Yamamuro, Kazuhiko; Sneeboer, Marjolein; Tan, I-Li; Flanigan, Meghan E; Rose, Samuel A; Chang, Christie; Leader, Andrew; Le Bourhis, Hortense; Sweet, Eric S; Tung, Navpreet; Wroblewska, Aleksandra; Lavin, Yonit; See, Peter; Baccarini, Alessia; Ginhoux, Florent; Chitu, Violeta; Stanley, E Richard; Russo, Scott J; Yue, Zhenyu; Brown, Brian D; Joyner, Alexandra L; De Witte, Lotje D; Morishita, Hirofumi; Schaefer, Anne; Merad, Miriam
Microglia, the brain resident macrophages, critically shape forebrain neuronal circuits. However, their precise function in the cerebellum is unknown. Here we show that human and mouse cerebellar microglia express a unique molecular program distinct from forebrain microglia. Cerebellar microglial identity was driven by the CSF-1R ligand CSF-1, independently of the alternate CSF-1R ligand, IL-34. Accordingly, CSF-1 depletion from Nestin+ cells led to severe depletion and transcriptional alterations of cerebellar microglia, while microglia in the forebrain remained intact. Strikingly, CSF-1 deficiency and alteration of cerebellar microglia were associated with reduced Purkinje cells, altered neuronal function, and defects in motor learning and social novelty interactions. These findings reveal a novel CSF-1-CSF-1R signaling-mediated mechanism that contributes to motor function and social behavior.
PMID: 31350310
ISSN: 1540-9538
CID: 4010222
Introduction: The ARCDB in the Age of Open Access
Lehmann, Ruth
PMID: 31590584
ISSN: 1530-8995
CID: 4129392
The Israeli acute paralysis virus IRES captures host ribosomes by mimicking a ribosomal state with hybrid tRNAs
Acosta-Reyes, Francisco; Neupane, Ritam; Frank, Joachim; Fernández, Israel S
Colony collapse disorder (CCD) is a multi-faceted syndrome decimating bee populations worldwide, and a group of viruses of the widely distributed Dicistroviridae family have been identified as a causing agent of CCD. This family of viruses employs non-coding RNA sequences, called internal ribosomal entry sites (IRESs), to precisely exploit the host machinery for viral protein production. Using single-particle cryo-electron microscopy (cryo-EM), we have characterized how the IRES of Israeli acute paralysis virus (IAPV) intergenic region captures and redirects translating ribosomes toward viral RNA messages. We reconstituted two in vitro reactions targeting a pre-translocation and a post-translocation state of the IAPV-IRES in the ribosome, allowing us to identify six structures using image processing classification methods. From these, we reconstructed the trajectory of IAPV-IRES from the early small subunit recruitment to the final post-translocated state in the ribosome. An early commitment of IRES/ribosome complexes for global pre-translocation mimicry explains the high efficiency observed for this IRES. Efforts directed toward fighting CCD by targeting the IAPV-IRES using RNA-interference technology are underway, and the structural framework presented here may assist in further refining these approaches.
PMCID:6826211
PMID: 31609474
ISSN: 1460-2075
CID: 4304802
Loss of SATB1 Induces p21-Dependent Cellular Senescence in Post-mitotic Dopaminergic Neurons
Riessland, Markus; Kolisnyk, Benjamin; Kim, Tae Wan; Cheng, Jia; Ni, Jason; Pearson, Jordan A; Park, Emily J; Dam, Kevin; Acehan, Devrim; Ramos-Espiritu, Lavoisier S; Wang, Wei; Zhang, Jack; Shim, Jae-Won; Ciceri, Gabriele; Brichta, Lars; Studer, Lorenz; Greengard, Paul
Cellular senescence is a mechanism used by mitotic cells to prevent uncontrolled cell division. As senescent cells persist in tissues, they cause local inflammation and are harmful to surrounding cells, contributing to aging. Generally, neurodegenerative diseases, such as Parkinson's, are disorders of aging. The contribution of cellular senescence to neurodegeneration is still unclear. SATB1 is a DNA binding protein associated with Parkinson's disease. We report that SATB1 prevents cellular senescence in post-mitotic dopaminergic neurons. Loss of SATB1 causes activation of a cellular senescence transcriptional program in dopamine neurons both in human stem cell-derived dopaminergic neurons and in mice. We observed phenotypes that are central to cellular senescence in SATB1 knockout dopamine neurons in vitro and in vivo. Moreover, we found that SATB1 directly represses expression of the pro-senescence factor p21 in dopaminergic neurons. Our data implicate senescence of dopamine neurons as a contributing factor in the pathology of Parkinson's disease.
PMID: 31543366
ISSN: 1875-9777
CID: 4107292
Mitochondrial lipid droplet formation as a detoxification mechanism to sequester and degrade excessive urothelial membranes
Liao, Yi; Tham, Daniel K L; Liang, Feng-Xia; Chang, Jennifer; Wei, Yuan; Reddy, Sudhir Putty; Sall, Joseph; Ren, Sarah J; Chicote, Javier U; Arnold, Lora L; Hu, Chih-Chi Andrew; Romih, Rok; Andrade, Leonardo R; Rindler, Michael J; Cohen, Samuel M; DeSalle, Rob; Garcia-España, Antonio; Ding, Mingxiao; Wu, Xue-Ru; Sun, Tung-Tien
The apical surface of the terminally differentiated mammalian urothelial umbrella cell is mechanically stable and highly impermeable, in part due its coverage by urothelial plaques consisting of 2D-crystals of uroplakin particles. The mechanism for regulating the uroplakin/plaque level is unclear. We found that genetic ablation of the highly tissue-specific sorting nexin Snx31, which localizes to plaques lining the multivesicular bodies (MVBs) in urothelial umbrella cells, abolishes MVBs suggesting that Snx31 plays a role in stabilizing the MVB-associated plaques by allowing them to achieve a greater curvature. Strikingly, Snx31 ablation also induces a massive accumulation of uroplakin-containing mitochondria-derived lipid droplets (LDs), which mediate uroplakin degradation via autophagy/lipophagy, leading to the loss of apical and fusiform vesicle plaques. These results suggest that MVBs play an active role in suppressing the excessive/wasteful endocytic degradation of uroplakins. Failure of this suppression mechanism triggers the formation of mitochondrial LDs so that excessive uroplakin membranes can be sequestered and degraded. Since mitochondrial LD formation, which occurs at a low level in normal urothelium, can also be induced by disturbance in uroplakin polymerization due to individual uroplakin-knockout and by arsenite, a bladder carcinogen, this pathway may represent an inducible, versatile urothelial detoxification mechanism. [Media: see text] [Media: see text] [Media: see text].
PMID: 31577526
ISSN: 1939-4586
CID: 4116262
12-Lipoxygenase Regulates Cold Adaptation and Glucose Metabolism by Producing the Omega-3 Lipid 12-HEPE from Brown Fat
Leiria, Luiz Osório; Wang, Chih-Hao; Lynes, Matthew D; Yang, Kunyan; Shamsi, Farnaz; Sato, Mari; Sugimoto, Satoru; Chen, Emily Y; Bussberg, Valerie; Narain, Niven R; Sansbury, Brian E; Darcy, Justin; Huang, Tian Lian; Kodani, Sean D; Sakaguchi, Masaji; Rocha, Andréa L; Schulz, Tim J; Bartelt, Alexander; Hotamisligil, Gökhan S; Hirshman, Michael F; van Leyen, Klaus; Goodyear, Laurie J; Blüher, Matthias; Cypess, Aaron M; Kiebish, Michael A; Spite, Matthew; Tseng, Yu-Hua
Distinct oxygenases and their oxylipin products have been shown to participate in thermogenesis by mediating physiological adaptations required to sustain body temperature. Since the role of the lipoxygenase (LOX) family in cold adaptation remains elusive, we aimed to investigate whether, and how, LOX activity is required for cold adaptation and to identify LOX-derived lipid mediators that could serve as putative cold mimetics with therapeutic potential to combat diabetes. By utilizing mass-spectrometry-based lipidomics in mice and humans, we demonstrated that cold and β3-adrenergic stimulation could promote the biosynthesis and release of 12-LOX metabolites from brown adipose tissue (BAT). Moreover, 12-LOX ablation in mouse brown adipocytes impaired glucose uptake and metabolism, resulting in blunted adaptation to the cold in vivo. The cold-induced 12-LOX product 12-HEPE was found to be a batokine that improves glucose metabolism by promoting glucose uptake into adipocytes and skeletal muscle through activation of an insulin-like intracellular signaling pathway.
PMCID:6774888
PMID: 31353262
ISSN: 1932-7420
CID: 5150502
Neural stem cell dynamics: the development of brain tumours
Hakes, Anna E; Brand, Andrea H
Determining the premalignant lesions that develop into malignant tumours remains a daunting task. Brain tumours are frequently characterised by a block in differentiation, implying that normal developmental pathways become hijacked during tumourigenesis. However, the heterogeneity of stem cells and their progenitors in the brain suggests there are many potential routes to tumour initiation. Studies in Drosophila melanogaster have enhanced our understanding of the tumourigenic potential of distinct cell types in the brain. Here we review recent studies that have improved our knowledge of neural stem cell behaviour during development and in brain tumour models.
PMID: 31330360
ISSN: 1879-0410
CID: 5193482
Apolipoprotein AI) Promotes Atherosclerosis Regression in Diabetic Mice by Suppressing Myelopoiesis and Plaque Inflammation
Barrett, Tessa J; Distel, Emilie; Murphy, Andrew J; Hu, Jiyuan; Garshick, Michael S; Ogando, Yoscar; Liu, Jianhua; Vaisar, Tomas; Heinecke, Jay W; Berger, Jeffrey S; Goldberg, Ira J; Fisher, Edward A
BACKGROUND:Despite robust cholesterol lowering, cardiovascular disease risk remains increased in patients with diabetes mellitus. Consistent with this, diabetes mellitus impairs atherosclerosis regression after cholesterol lowering in humans and mice. In mice, this is attributed in part to hyperglycemia-induced monocytosis, which increases monocyte entry into plaques despite cholesterol lowering. In addition, diabetes mellitus skews plaque macrophages toward an atherogenic inflammatory M1 phenotype instead of toward the atherosclerosis-resolving M2 state typical with cholesterol lowering. Functional high-density lipoprotein (HDL), typically low in patients with diabetes mellitus, reduces monocyte precursor proliferation in murine bone marrow and has anti-inflammatory effects on human and murine macrophages. Our study aimed to test whether raising functional HDL levels in diabetic mice prevents monocytosis, reduces the quantity and inflammation of plaque macrophages, and enhances atherosclerosis regression after cholesterol lowering. METHODS:mice were transplanted into either wild-type, diabetic wild-type, or diabetic mice transgenic for human apolipoprotein AI, which have elevated functional HDL. Recipient mice all had low levels of low-density lipoprotein cholesterol to promote plaque regression. After 2 weeks, plaques in recipient mouse aortic grafts were examined. RESULTS:Diabetic wild-type mice had impaired atherosclerosis regression, which was normalized by raising HDL levels. This benefit was linked to suppressed hyperglycemia-driven myelopoiesis, monocytosis, and neutrophilia. Increased HDL improved cholesterol efflux from bone marrow progenitors, suppressing their proliferation and monocyte and neutrophil production capacity. In addition to reducing circulating monocytes available for recruitment into plaques, in the diabetic milieu, HDL suppressed the general recruitability of monocytes to inflammatory sites and promoted plaque macrophage polarization to the M2, atherosclerosis-resolving state. There was also a decrease in plaque neutrophil extracellular traps, which are atherogenic and increased by diabetes mellitus. CONCLUSIONS:Raising apolipoprotein AI and functional levels of HDL promotes multiple favorable changes in the production of monocytes and neutrophils and in the inflammatory environment of atherosclerotic plaques of diabetic mice after cholesterol lowering and may represent a novel approach to reduce cardiovascular disease risk in people with diabetes mellitus.
PMID: 31567014
ISSN: 1524-4539
CID: 4115962