Try a new search

Format these results:

Searched for:

school:SOM

Department/Unit:Cell Biology

Total Results:

14178


Analysis of Host Responses to Hepatitis B and Delta Viral Infections in a Micro-scalable Hepatic Co-culture System

Winer, Benjamin Y; Gaska, Jenna M; Lipkowitz, Gabriel; Bram, Yaron; Parekh, Amit; Parsons, Lance; Leach, Robert; Jindal, Rohit; Cho, Cheul H; Shrirao, Anil; Novik, Eric; Schwartz, Robert E; Ploss, Alexander
Hepatitis B virus (HBV) remains a major global health problem with 257 million chronically infected individuals worldwide, of whom approximately 20 million are co-infected with hepatitis delta virus (HDV). Progress toward a better understanding of the complex interplay between these two viruses and the development of novel therapies have been hampered by the scarcity of suitable cell culture models that mimic the natural environment of the liver. Here, we established HBV and HBV/HDV co-infections and super-infections in self-assembling co-cultured primary human hepatocytes (SACC-PHHs) for up to 28 days in a 384-well format and highlight the suitability of this platform for high-throughput drug testing. We performed RNA sequencing at days 8 and 28 on SACC-PHHs, either HBV mono-infected or HBV/HDV co-infected. Our transcriptomic analysis demonstrates that hepatocytes in SACC-PHHs maintain a mature hepatic phenotype over time, regardless of infection condition. We confirm that HBV is a stealth virus, as it does not induce a strong innate immune response; rather, oxidative phosphorylation and extracellular matrix-receptor interactions are dysregulated to create an environment that promotes persistence. Notably, HDV co-infection also did not lead to statistically significant transcriptional changes across multiple donors and replicates. The lack of innate immune activation is not due to SACC-PHHs being impaired in their ability to induce interferon stimulated genes (ISGs). Rather, polyinosinic:polycytidylic acid exposure activates ISGs, and this stimulation significantly inhibits HBV infection, yet only minimally affects the ability of HDV to infect and persist. Conclusion: These data demonstrate that the SACC-PHH system is a versatile platform for studying HBV/HDV co-infections and holds promise for performing chemical library screens and improving our understanding of the host response to such infections.
PMCID:6917996
PMID: 31206195
ISSN: 1527-3350
CID: 5933372

A kinesin-3 recruitment complex facilitates axonal sorting of enveloped alpha herpesvirus capsids

Scherer, Julian; Hogue, Ian B; Yaffe, Zachary A; Tanneti, Nikhila S; Winer, Benjamin Y; Vershinin, Michael; Enquist, Lynn W
Axonal sorting, the controlled passage of specific cargoes from the cell soma into the axon compartment, is critical for establishing and maintaining the polarity of mature neurons. To delineate axonal sorting events, we took advantage of two neuroinvasive alpha-herpesviruses. Human herpes simplex virus 1 (HSV-1) and pseudorabies virus of swine (PRV; suid herpesvirus 1) have evolved as robust cargo of axonal sorting and transport mechanisms. For efficient axonal sorting and subsequent egress from axons and presynaptic termini, progeny capsids depend on three viral membrane proteins (Us7 (gI), Us8 (gE), and Us9), which engage axon-directed kinesin motors. We present evidence that Us7-9 of the veterinary pathogen pseudorabies virus (PRV) form a tripartite complex to recruit Kif1a, a kinesin-3 motor. Based on multi-channel super-resolution and live TIRF microscopy, complex formation and motor recruitment occurs at the trans-Golgi network. Subsequently, progeny virus particles enter axons as enveloped capsids in a transport vesicle. Artificial recruitment of Kif1a using a drug-inducible heterodimerization system was sufficient to rescue axonal sorting and anterograde spread of PRV mutants devoid of Us7-9. Importantly, biophysical evidence suggests that Us9 is able to increase the velocity of Kif1a, a previously undescribed phenomenon. In addition to elucidating mechanisms governing axonal sorting, our results provide further insight into the composition of neuronal transport systems used by alpha-herpesviruses, which will be critical for both inhibiting the spread of infection and the safety of herpesvirus-based oncolytic therapies.
PMCID:7010296
PMID: 31995633
ISSN: 1553-7374
CID: 5933392

Expression profiling of the adhesion G protein-coupled receptor GPR133 (ADGRD1) in glioma subtypes

Frenster, Joshua D; Kader, Michael; Kamen, Scott; Sun, James; Chiriboga, Luis; Serrano, Jonathan; Bready, Devin; Golub, Danielle; Ravn-Boess, Niklas; Stephan, Gabriele; Chi, Andrew S; Kurz, Sylvia C; Jain, Rajan; Park, Christopher Y; Fenyo, David; Liebscher, Ines; Schöneberg, Torsten; Wiggin, Giselle; Newman, Robert; Barnes, Matt; Dickson, John K; MacNeil, Douglas J; Huang, Xinyan; Shohdy, Nadim; Snuderl, Matija; Zagzag, David; Placantonakis, Dimitris G
Background/UNASSIGNED:Glioma is a family of primary brain malignancies with limited treatment options and in need of novel therapies. We previously demonstrated that the adhesion G protein-coupled receptor GPR133 (ADGRD1) is necessary for tumor growth in adult glioblastoma, the most advanced malignancy within the glioma family. However, the expression pattern of GPR133 in other types of adult glioma is unknown. Methods/UNASSIGNED:We used immunohistochemistry in tumor specimens and non-neoplastic cadaveric brain tissue to profile GPR133 expression in adult gliomas. Results/UNASSIGNED:We show that GPR133 expression increases as a function of WHO grade and peaks in glioblastoma, where all tumors ubiquitously express it. Importantly, GPR133 is expressed within the tumor bulk, as well as in the brain-infiltrating tumor margin. Furthermore, GPR133 is expressed in both isocitrate dehydrogenase (IDH) wild-type and mutant gliomas, albeit at higher levels in IDH wild-type tumors. Conclusion/UNASSIGNED:The fact that GPR133 is absent from non-neoplastic brain tissue but de novo expressed in glioma suggests that it may be exploited therapeutically.
PMCID:7262742
PMID: 32642706
ISSN: 2632-2498
CID: 4517542

Lipidome-wide 13C flux analysis: a novel tool to estimate the turnover of lipids in organisms and cultures

Schlame, Michael; Xu, Yang; Erdjument-Bromage, Hediye; Neubert, Thomas A; Ren, Mindong
Lipid metabolism plays an important role in the regulation of cellular homeostasis. However, since it is difficult to measure the actual rates of synthesis and degradation of individual lipid species, lipid compositions are used often as a surrogate to evaluate lipid metabolism even though they provide only static snapshots of the lipodome. Here, we designed a simple method to determine the turnover rate of phospholipid and acylglycerol species based on the incorporation of 13C6-glucose combined with LC-MS/MS. We labeled adult Drosophila melanogaster with 13C6-glucose that incorporates into the entire lipidome, derived kinetic parameters from mass spectra, and studied effects of deletion of CG6718, the fly homologue of the calcium-independent phospholipase A2β, on lipid metabolism. Although 13C6-glucose gave rise to a complex pattern of 13C incorporation, we were able to identify discrete isotopomers in which 13C atoms were confined to the glycerol group. With these isotopomers, we calculated turnover rate constants, half-life times, and fluxes of the glycerol backbone of multiple lipid species. To perform these calculations, we estimated the fraction of labeled molecules in glycerol-3-phosphate, the lipid precursor, by mass isotopomer distribution analysis of the spectra of phosphatidylglycerol. When we applied this method to D. melanogaster, we found a range of lipid half-lives from 2 to 200 days, demonstrated tissue-specific fluxes of individual lipid species, and identified a novel function of CG6718 in triacylglycerol metabolism. This method provides fluxomics-type data with significant potential to improve the understanding of complex lipid regulation in a variety of research models.
PMID: 31712250
ISSN: 1539-7262
CID: 4185092

Matched-Cohort Study Comparing Bioactive Human Split-Thickness Skin Allograft plus Standard of Care to Standard of Care Alone in the Treatment of Diabetic Ulcers: A retrospective analysis across 470 institutions

Barbul, Adrian; Gurtner, Geoffrey C; Gordon, Hanna; Bakewell, Katie; Carter, Marissa J
This retrospective, matched-cohort study analyzed 1,556 patients with diabetic ulcers treated at 470 wound centers throughout the United States to determine the effectiveness of a cryopreserved bioactive split-thickness skin allograft plus standard of care when compared to standard of care alone. There were 778 patients treated with the graft in the treatment cohort, who were paired with 778 patients drawn from a pool of 126,864 candidates treated with standard of care alone (controls), by using propensity matching to create nearly identical cohorts. Both cohorts received standard wound care, including surgical debridement, moist wound care, and offloading. Logistic regression analysis of healing rates according to wound size, wound location, wound duration, volume reduction, exposed deep structures, and Wagner grade was performed. Amputation rates and recidivism at 3 months, 6 months, and 1 year after wound closure were analyzed. Diabetic ulcers were 59% more likely to close in the treatment cohort compared to the control cohort (p = .0045). The healing rate with the graft was better than standard of care across multiple subsets, but the most significant improvement was noted in the worst wounds that had a duration of 90-179 days prior to treatment (p =.0073), exposed deep structures (p = .036), and/or Wagner Grade 4 ulcers (p = 0.04). Furthermore, the decrease in recidivism was statistically significant at 3 months, 6 months, and 1 year, with and without initially exposed deep structures (p < .05). The amputation rate in the treatment cohort was 41.7% less than that of the control cohort at 20 weeks (0.9% vs 1.5%, respectively). This study demonstrated that diabetic ulcers treated with a cryopreserved bioactive split-thickness skin allograft were more likely to heal and remain closed compared to ulcers treated with standard of care alone. This article is protected by copyright. All rights reserved.
PMID: 31587418
ISSN: 1524-475x
CID: 4129172

SINGLE CELL TIPSEQ, A NEW METHOD TO MAP LINE-1 INSERTIONS, PROVIDES INFORMATION ABOUT SUB CHROMOSOMAL GENETIC VARIATION IN HUMAN EMBRYOS. [Meeting Abstract]

Kohlrausch, Fabiana B.; Wang, Fang; McKerrow, Wilson; Fenyo, David; Boeke, Jef D.; Keefe, David L.
ISI:000579355301453
ISSN: 0015-0282
CID: 4685392

Teaching cutaneous sensory distribution of the upper limb using interactive virtual reality [Meeting Abstract]

Shearer, Brian; Ramirez, Kristen; Dorsainville, Greg; Harnik, Victoria; Rosenfeld, Mel
ISI:000546023100223
ISSN: 0892-6638
CID: 4873512

OOCYTE STIMULATION/TRIGGER PROTOCOL CORRELATES WITH THE PROPORTION OF IMMATURE OOCYTES RETRIEVED IN ASSISTED REPRODUCTIVE TECHNOLOGY CYCLES. [Meeting Abstract]

Gonullu, Damla C.; McCulloh, David H.; Oh, Cheongeun; Robinson, Leroy G., Jr.; Salih, Sana; Keefe, David L.
ISI:000579355300381
ISSN: 0015-0282
CID: 4685232

Inhibition of MicroRNA-33 Reprograms the Transcriptional Landscape and Kinetic Processes of Immune Cells to Promote Atherosclerotic Plaque Regression [Meeting Abstract]

Afonso, Milessa S; Sharma, Monika; Schlegel, Paul Martin; Khodadadi-Jamayran, Alireza; van Solingen, Coen; Shanley, Lianne; Koelwyn, Graeme J; Beckett, Lauren; Peled, Daniel; Rahman, Karishma; Ouimet, Mireille; Fisher, Edward A; Moore, Kathryn J
ORIGINAL:0014682
ISSN: 1524-4636
CID: 4533672

Re-evaluation of the affinities of the ?Dryopithecus wuduensis mandible [Meeting Abstract]

Pugh, Kelsey D.; Pitirri, M. Kathleen; Arenson, Julia L.; Shearer, Brian M.; Gilbert, Christopher C.; Delson, Eric
ISI:000513288902264
ISSN: 0002-9483
CID: 4344942