Try a new search

Format these results:

Searched for:

person:gg87

Total Results:

366


A Patient-Specific Segmentation Framework for Longitudinal MR Images of Traumatic Brain Injury

Wang, Bo; Prastawa, Marcel; Irimia, Andrei; Chambers, Micah C; Vespa, Paul M; Van Horn, John D; Gerig, Guido
Traumatic brain injury (TBI) is a major cause of death and disability worldwide. Robust, reproducible segmentations of MR images with TBI are crucial for quantitative analysis of recovery and treatment efficacy. However, this is a significant challenge due to severe anatomy changes caused by edema (swelling), bleeding, tissue deformation, skull fracture, and other effects related to head injury. In this paper, we introduce a multi-modal image segmentation framework for longitudinal TBI images. The framework is initialized through manual input of primary lesion sites at each time point, which are then refined by a joint approach composed of Bayesian segmentation and construction of a personalized atlas. The personalized atlas construction estimates the average of the posteriors of the Bayesian segmentation at each time point and warps the average back to each time point to provide the updated priors for Bayesian segmentation. The difference between our approach and segmenting longitudinal images independently is that we use the information from all time points to improve the segmentations. Given a manual initialization, our framework automatically segments healthy structures (white matter, grey matter, cerebrospinal fluid) as well as different lesions such as hemorrhagic lesions and edema. Our framework can handle different sets of modalities at each time point, which provides flexibility in analyzing clinical scans. We show results on three subjects with acute baseline scans and chronic follow-up scans. The results demonstrate that joint analysis of all the points yields improved segmentation compared to independent analysis of the two time points.
PMCID:3898832
PMID: 24465115
ISSN: 0277-786x
CID: 1780162

Automatic corpus callosum segmentation using a deformable active Fourier contour model

Vachet, Clement; Yvernault, Benjamin; Bhatt, Kshamta; Smith, Rachel G; Gerig, Guido; Hazlett, Heather Cody; Styner, Martin
The corpus callosum (CC) is a structure of interest in many neuroimaging studies of neuro-developmental pathology such as autism. It plays an integral role in relaying sensory, motor and cognitive information from homologous regions in both hemispheres. We have developed a framework that allows automatic segmentation of the corpus callosum and its lobar subdivisions. Our approach employs constrained elastic deformation of flexible Fourier contour model, and is an extension of Szekely's 2D Fourier descriptor based Active Shape Model. The shape and appearance model, derived from a large mixed population of 150+ subjects, is described with complex Fourier descriptors in a principal component shape space. Using MNI space aligned T1w MRI data, the CC segmentation is initialized on the mid-sagittal plane using the tissue segmentation. A multi-step optimization strategy, with two constrained steps and a final unconstrained step, is then applied. If needed, interactive segmentation can be performed via contour repulsion points. Lobar connectivity based parcellation of the corpus callosum can finally be computed via the use of a probabilistic CC subdivision model. Our analysis framework has been integrated in an open-source, end-to-end application called CCSeg both with a command line and Qt-based graphical user interface (available on NITRC). A study has been performed to quantify the reliability of the semi-automatic segmentation on a small pediatric dataset. Using 5 subjects randomly segmented 3 times by two experts, the intra-class correlation coefficient showed a superb reliability (0.99). CCSeg is currently applied to a large longitudinal pediatric study of brain development in autism.
PMCID:3864934
PMID: 24353382
ISSN: 0277-786x
CID: 1780172

A framework for longitudinal data analysis via shape regression

Fishbaugh, James; Durrleman, Stanley; Piven, Joseph; Gerig, Guido
Traditional longitudinal analysis begins by extracting desired clinical measurements, such as volume or head circumference, from discrete imaging data. Typically, the continuous evolution of a scalar measurement is estimated by choosing a 1D regression model, such as kernel regression or fitting a polynomial of fixed degree. This type of analysis not only leads to separate models for each measurement, but there is no clear anatomical or biological interpretation to aid in the selection of the appropriate paradigm. In this paper, we propose a consistent framework for the analysis of longitudinal data by estimating the continuous evolution of shape over time as twice differentiable flows of deformations. In contrast to 1D regression models, one model is chosen to realistically capture the growth of anatomical structures. From the continuous evolution of shape, we can simply extract any clinical measurements of interest. We demonstrate on real anatomical surfaces that volume extracted from a continuous shape evolution is consistent with a 1D regression performed on the discrete measurements. We further show how the visualization of shape progression can aid in the search for significant measurements. Finally, we present an example on a shape complex of the brain (left hemisphere, right hemisphere, cerebellum) that demonstrates a potential clinical application for our framework.
PMCID:3877317
PMID: 24392201
ISSN: 0277-786x
CID: 1780182

Measures for Validation of DTI Tractography

Gouttard, Sylvain; Goodlett, Casey B; Kubicki, Marek; Gerig, Guido
The evaluation of analysis methods for diffusion tensor imaging (DTI) remains challenging due to the lack of gold standards and validation frameworks. Significant work remains in developing metrics for comparing fiber bundles generated from streamline tractography. We propose a set of volumetric and tract oriented measures for evaluating tract differences. The different methods developed for this assessment work are: an overlap measurement, a point cloud distance and a quantification of the diffusion properties at similar locations between fiber bundles. The application of the measures in this paper is a comparison of atlas generated tractography to tractography generated in individual images. For the validation we used a database of 37 subject DTIs, and applied the measurements on five specific fiber bundles: uncinate, cingulum (left and right for both bundles) and genu. Each measurments is interesting for specific use: the overlap measure presents a simple and comprehensive metric but is sensitive to partial voluming and does not give consistent values depending on the bundle geometry. The point cloud distance associated with a quantile interpretation of the distribution gives a good intuition of how close and similar the bundles are. Finally, the functional difference is useful for a comparison of the diffusion properties since it is the focus of many DTI analysis to compare scalar invariants. The comparison demonstrated reasonable similarity of results. The tract difference measures are also applicable to comparison of tractography algorithms, quality control, reproducibility studies, and other validation problems.
PMCID:3864930
PMID: 24353381
ISSN: 0277-786x
CID: 1780192

Automated Voxel-Wise Brain DTI Analysis of Fitness and Aging

Liu, Zhexing; Farzinfar, Mahshid; Katz, Laurence M; Zhu, Hongtu; Goodlett, Casey B; Gerig, Guido; Styner, Martin; Marks, Bonita L
Diffusion Tensor Imaging (DTI) has become a widely used MR modality to investigate white matter integrity in the brain. This paper presents the application of an automated method for voxel-wise group comparisons of DTI images in a study of fitness and aging. The automated processing method consists of 3 steps: 1) preprocessing including image format converting, image quality control, eddy-current and motion artifact correction, skull stripping and tensor image estimation, 2) study-specific unbiased DTI atlas computation via diffeomorphic fluid-based and demons deformable registration and 3) voxel-wise statistical analysis via heterogeneous linear regression and a wild bootstrap technique for correcting for multiple comparisons. Our results show that this fully automated method is suitable for voxel-wise group DTI analysis. Furthermore, in older adults, the results suggest a strong link between reduced fractional anisotropy (FA) values, fitness and aging.
ORIGINAL:0009896
ISSN: 1874-3471
CID: 1788522

Patient-tailored connectomics visualization for the assessment of white matter atrophy in traumatic brain injury

Irimia, Andrei; Chambers, Micah C; Torgerson, Carinna M; Filippou, Maria; Hovda, David A; Alger, Jeffry R; Gerig, Guido; Toga, Arthur W; Vespa, Paul M; Kikinis, Ron; Van Horn, John D
Available approaches to the investigation of traumatic brain injury (TBI) are frequently hampered, to some extent, by the unsatisfactory abilities of existing methodologies to efficiently define and represent affected structural connectivity and functional mechanisms underlying TBI-related pathology. In this paper, we describe a patient-tailored framework which allows mapping and characterization of TBI-related structural damage to the brain via multimodal neuroimaging and personalized connectomics. Specifically, we introduce a graphically driven approach for the assessment of trauma-related atrophy of white matter connections between cortical structures, with relevance to the quantification of TBI chronic case evolution. This approach allows one to inform the formulation of graphical neurophysiological and neuropsychological TBI profiles based on the particular structural deficits of the affected patient. In addition, it allows one to relate the findings supplied by our workflow to the existing body of research that focuses on the functional roles of the cortical structures being targeted. A graphical means for representing patient TBI status is relevant to the emerging field of personalized medicine and to the investigation of neural atrophy.
PMCID:3275792
PMID: 22363313
ISSN: 1664-2295
CID: 1780202

SEGMENTATION OF SERIAL MRI OF TBI PATIENTS USING PERSONALIZED ATLAS CONSTRUCTION AND TOPOLOGICAL CHANGE ESTIMATION

Wang, Bo; Prastawa, Marcel; Awate, Suyash P; Irimia, Andrei; Chambers, Micah C; Vespa, Paul M; van Horn, John D; Gerig, Guido
Traumatic brain injury (TBI) due to falls, car accidents, and warfare affects millions of people annually. Determining personalized therapy and assessment of treatment efficacy can substantially benefit from longitudinal (4D) magnetic resonance imaging (MRI). In this paper, we propose a method for segmenting longitudinal brain MR images with TBI using personalized atlas construction. Longitudinal images with TBI typically present topological changes over time due to the effect of the impact force on tissue, skull, and blood vessels and the recovery process. We address this issue by defining a novel atlas construction scheme that explicitly models the effect of topological changes. Our method automatically estimates the probability of topological changes jointly with the personalized atlas. We demonstrate the effectiveness of this approach on MR images with TBI that also have been segmented by human raters, where our method that integrates 4D information yields improved validation measures compared to temporally independent segmentations.
PMCID:3758244
PMID: 23999192
ISSN: 1945-7928
CID: 1780242

STATISTICAL GROWTH MODELING OF LONGITUDINAL DT-MRI FOR REGIONAL CHARACTERIZATION OF EARLY BRAIN DEVELOPMENT

Sadeghi, Neda; Prastawa, Marcel; Fletcher, P Thomas; Gilmore, John H; Lin, Weili; Gerig, Guido
A population growth model that represents the growth trajectories of individual subjects is critical to study and understand neurodevelopment. This paper presents a framework for jointly estimating and modeling individual and population growth trajectories, and determining significant regional differences in growth pattern characteristics applied to longitudinal neuroimaging data. We use non-linear mixed effect modeling where temporal change is modeled by the Gompertz function. The Gompertz function uses intuitive parameters related to delay, rate of change, and expected asymptotic value; all descriptive measures which can answer clinical questions related to growth. Our proposed framework combines nonlinear modeling of individual trajectories, population analysis, and testing for regional differences. We apply this framework to the study of early maturation in white matter regions as measured with diffusion tensor imaging (DTI). Regional differences between anatomical regions of interest that are known to mature differently are analyzed and quantified. Experiments with image data from a large ongoing clinical study show that our framework provides descriptive, quantitative information on growth trajectories that can be directly interpreted by clinicians. To our knowledge, this is the first longitudinal analysis of growth functions to explain the trajectory of early brain maturation as it is represented in DTI.
PMCID:3758243
PMID: 23999084
ISSN: 1945-7928
CID: 1780252

QUANTIFYING REGIONAL GROWTH PATTERNS THROUGH LONGITUDINAL ANALYSIS OF DISTANCES BETWEEN MULTIMODAL MR INTENSITY DISTRIBUTIONS

Vardhan, Avantika; Prastawa, Marcel; Gouttard, Sylvain; Piven, Joseph; Gerig, Guido
Quantitative analysis of early brain development through imaging is critical for identifying pathological development, which may in turn affect treatment procedures. We propose a framework for analyzing spatiotemporal patterns of brain maturation by quantifying intensity changes in longitudinal MR images. We use a measure of divergence between a pair of intensity distributions to study the changes that occur within specific regions, as well as between a pair of anatomical regions, over time. The change within a specific region is measured as the contrast between white matter and gray matter tissue belonging to that region. The change between a pair of regions is measured as the divergence between regional image appearances, summed over all tissue classes. We use kernel regression to integrate the temporal information across different subjects in a consistent manner. We applied our method on multimodal MRI data with T1-weighted (T1W) and T2-weighted (T2W) scans of each subject at the approximate ages of 6 months, 12 months, and 24 months. The results demonstrate that brain maturation begins at posterior regions and that frontal regions develop later, which matches previously published histological, qualitative and morphometric studies. Our multimodal analysis also confirms that T1W and T2W modalities capture different properties of the maturation process, a phenomena referred to as T2 time lag compared to T1. The proposed method has potential for analyzing regional growth patterns across different populations and for isolating specific critical maturation phases in different MR modalities.
PMCID:3744339
PMID: 23958630
ISSN: 1945-7928
CID: 1780262

Building Spatiotemporal Anatomical Models using Joint 4-D Segmentation, Registration, and Subject-Specific Atlas Estimation

Prastawa, Marcel; Awate, Suyash P; Gerig, Guido
Longitudinal analysis of anatomical changes is a vital component in many personalized-medicine applications for predicting disease onset, determining growth/atrophy patterns, evaluating disease progression, and monitoring recovery. Estimating anatomical changes in longitudinal studies, especially through magnetic resonance (MR) images, is challenging because of temporal variability in shape (e.g. from growth/atrophy) and appearance (e.g. due to imaging parameters and tissue properties affecting intensity contrast, or from scanner calibration). This paper proposes a novel mathematical framework for constructing subject-specific longitudinal anatomical models. The proposed method solves a generalized problem of joint segmentation, registration, and subject-specific atlas building, which involves not just two images, but an entire longitudinal image sequence. The proposed framework describes a novel approach that integrates fundamental principles that underpin methods for image segmentation, image registration, and atlas construction. This paper presents evaluation on simulated longitudinal data and on clinical longitudinal brain MRI data. The results demonstrate that the proposed framework effectively integrates information from 4-D spatiotemporal data to generate spatiotemporal models that allow analysis of anatomical changes over time.
PMCID:3615562
PMID: 23568185
ISSN: n/a
CID: 1780272