Try a new search

Format these results:

Searched for:

person:nixonr01

Total Results:

374


Neurofilament tail phosphorylation: identity of the RT-97 phosphoepitope and regulation in neurons by cross-talk among proline-directed kinases

Veeranna; Lee, Ju-Hyun; Pareek, Tej K; Jaffee, Howard; Boland, Barry; Vinod, K Yaragudri; Amin, Niranjana; Kulkarni, Ashok B; Pant, Harish C; Nixon, Ralph A
As axons myelinate, establish a stable neurofilament network, and expand in caliber, neurofilament proteins are extensively phosphorylated along their C-terminal tails, which is recognized by the monoclonal antibody, RT-97. Here, we demonstrate in vivo that RT-97 immunoreactivity (IR) is generated by phosphorylation at KSPXK or KSPXXXK motifs and requires flanking lysines at specific positions. extracellular signal regulated kinase 1,2 (ERK1,2) and pERK1,2 levels increase in parallel with phosphorylation at the RT-97 epitope during early postnatal brain development. Purified ERK1,2 generated RT-97 on both KSP motifs on recombinant NF-H tail domain proteins, while cdk5 phosphorylated only KSPXK motifs. RT-97 epitope generation in primary hippocampal neurons was regulated by extensive cross-talk among ERK1,2, c-Jun N-terminal kinase 1,2 (JNK1,2) and cdk5. Inhibition of both ERK1,2 and JNK1,2 completely blocked RT-97 generation. Cdk5 influenced RT-97 generation indirectly by modulating JNK activation. In mice, cdk5 gene deletion did not significantly alter RT-97 IR or ERK1,2 and JNK activation. In mice lacking the cdk5 activator P35, the partial suppression of cdk5 activity increased RT-97 IR by activating ERK1,2. Thus, cdk5 influences RT-97 epitope generation partly by modulating ERKs and JNKs, which are the two principal kinases regulating neurofilament phosphorylation. The regulation of a single target by multiple protein kinases underscores the importance of monitoring other relevant kinases when the activity of a particular one is blocked.
PMCID:2941900
PMID: 18715269
ISSN: 0022-3042
CID: 1085952

Neuronal apoptosis and autophagy cross talk in aging PS/APP mice, a model of Alzheimer's disease

Yang, Dun-Sheng; Kumar, Asok; Stavrides, Philip; Peterson, Jesse; Peterhoff, Corrine M; Pawlik, Monika; Levy, Efrat; Cataldo, Anne M; Nixon, Ralph A
Mechanisms of neuronal loss in Alzheimer's disease (AD) are poorly understood. Here we show that apoptosis is a major form of neuronal cell death in PS/APP mice modeling AD-like neurodegeneration. Pyknotic neurons in adult PS/APP mice exhibited apoptotic changes, including DNA fragmentation, caspase-3 activation, and caspase-cleaved alpha-spectrin generation, identical to developmental neuronal apoptosis in wild-type mice. Ultrastructural examination using immunogold cytochemistry confirmed that activated caspase-3-positive neurons also exhibited chromatin margination and condensation, chromatin balls, and nuclear membrane fragmentation. Numbers of apoptotic profiles in both cortex and hippocampus of PS/APP mice compared with age-matched controls were twofold to threefold higher at 6 months of age and eightfold higher at 21 to 26 months of age. Additional neurons undergoing dark cell degeneration exhibited none of these apoptotic features. Activated caspase-3 and caspase-3-cleaved spectrin were abundant in autophagic vacuoles, accumulating in dystrophic neurites of PS/APP mice similar to AD brains. Administration of the cysteine protease inhibitor, leupeptin, promoted accumulation of autophagic vacuoles containing activated caspase-3 in axons of PS/APP mice and, to a lesser extent, in those of wild-type mice, implying that this pro-apoptotic factor is degraded by autophagy. Leupeptin-induced autophagic impairment increased the number of apoptotic neurons in PS/APP mice. Our findings establish apoptosis as a mode of neuronal cell death in aging PS/APP mice and identify the cross talk between autophagy and apoptosis, which influences neuronal survival in AD-related neurodegeneration
PMCID:2527090
PMID: 18688038
ISSN: 1525-2191
CID: 86556

Inhibition of calpains improves memory and synaptic transmission in a mouse model of Alzheimer disease

Trinchese, Fabrizio; Fa', Mauro; Liu, Shumin; Zhang, Hong; Hidalgo, Ariel; Schmidt, Stephen D; Yamaguchi, Hisako; Yoshii, Narihiko; Mathews, Paul M; Nixon, Ralph A; Arancio, Ottavio
Calpains are calcium-dependent enzymes that determine the fate of proteins through regulated proteolytic activity. Calpains have been linked to the modulation of memory and are key to the pathogenesis of Alzheimer disease (AD). When abnormally activated, calpains can also initiate degradation of proteins essential for neuronal survival. Here we show that calpain inhibition through E64, a cysteine protease inhibitor, and the highly specific calpain inhibitor BDA-410 restored normal synaptic function both in hippocampal cultures and in hippocampal slices from the APP/PS1 mouse, an animal model of AD. Calpain inhibition also improved spatial-working memory and associative fear memory in APP/PS1 mice. These beneficial effects of the calpain inhibitors were associated with restoration of normal phosphorylation levels of the transcription factor CREB and involved redistribution of the synaptic protein synapsin I. Thus, calpain inhibition may prove useful in the alleviation of memory loss in AD
PMCID:2441853
PMID: 18596919
ISSN: 0021-9738
CID: 95386

Down syndrome fibroblast model of Alzheimer-related endosome pathology: accelerated endocytosis promotes late endocytic defects

Cataldo, Anne M; Mathews, Paul M; Boiteau, Anne Boyer; Hassinger, Linda C; Peterhoff, Corrinne M; Jiang, Ying; Mullaney, Kerry; Neve, Rachael L; Gruenberg, Jean; Nixon, Ralph A
Endocytic dysfunction is an early pathological change in Alzheimer's disease (AD) and Down's syndrome (DS). Using primary fibroblasts from DS individuals, we explored the interactions among endocytic compartments that are altered in AD and assessed their functional consequences in AD pathogenesis. We found that, like neurons in both AD and DS brains, DS fibroblasts exhibit increased endocytic uptake, fusion, and recycling, and trafficking of lysosomal hydrolases to rab5-positive early endosomes. Moreover, late endosomes identified using antibodies to rab7 and lysobisphosphatidic acid increased in number and appeared as enlarged, perinuclear vacuoles, resembling those in neurons of both AD and DS brains. In control fibroblasts, similar enlargement of rab5-, rab7-, and lysobisphosphatidic acid-positive endosomes was induced when endocytosis and endosomal fusion were increased by expression of either a rab5 or an active rab5 mutant, suggesting that persistent endocytic activation results in late endocytic dysfunction. Conversely, expression of a rab5 mutant that inhibits endocytic uptake reversed early and late endosomal abnormalities in DS fibroblasts. Our results indicate that DS fibroblasts recapitulate the neuronal endocytic dysfunction of AD and DS, suggesting that increased trafficking from early endosomes can account, in part, for downstream endocytic perturbations that occur in neurons in both AD and DS brains
PMCID:2475775
PMID: 18535180
ISSN: 1525-2191
CID: 95387

Autophagy induction and autophagosome clearance in neurons: relationship to autophagic pathology in Alzheimer's disease

Boland, Barry; Kumar, Asok; Lee, Sooyeon; Platt, Frances M; Wegiel, Jerzy; Yu, W Haung; Nixon, Ralph A
Macroautophagy, a major pathway for organelle and protein turnover, has been implicated in the neurodegeneration of Alzheimer's disease (AD). The basis for the profuse accumulation of autophagic vacuoles (AVs) in affected neurons of the AD brain, however, is unknown. In this study, we show that constitutive macroautophagy in primary cortical neurons is highly efficient, because newly formed autophagosomes are rapidly cleared by fusion with lysosomes, accounting for their scarcity in the healthy brain. Even after macroautophagy is strongly induced by suppressing mTOR (mammalian target of rapamycin) kinase activity with rapamycin or nutrient deprivation, active cathepsin-positive autolysosomes rather than LC3-II-positive autophagosomes predominate, implying efficient autophagosome clearance in healthy neurons. In contrast, selectively impeding late steps in macroautophagy by inhibiting cathepsin-mediated proteolysis within autolysosomes with cysteine- and aspartyl-protease inhibitors caused a marked accumulation of electron-dense double-membrane-limited AVs, containing cathepsin D and incompletely degraded LC3-II in perikarya and neurites. Similar structures accumulated in large numbers when fusion of autophagosomes with lysosomes was slowed by disrupting their transport on microtubules with vinblastine. Finally, we find that the autophagic vacuoles accumulating after protease inhibition or prolonged vinblastine treatment strongly resembled AVs that collect in dystrophic neurites in the AD brain and in an AD mouse model. We conclude that macroautophagy is constitutively active and highly efficient in healthy neurons and that the autophagic pathology observed in AD most likely arises from impaired clearance of AVs rather than strong autophagy induction alone. Therapeutic modulation of autophagy in AD may, therefore, require targeting late steps in the autophagic pathway
PMCID:2676733
PMID: 18596167
ISSN: 1529-2401
CID: 96865

Neurodegenerative lysosomal disorders- a continuum from development to late age

Nixon, Ralph A; Yang, Dun-Sheng; Lee, Ju-Hyun
Neuronal survival requires continuous lysosomal turnover of cellular constituents delivered by autophagy and endocytosis. Primary lysosomal dysfunction in inherited congenital 'lysosomal storage' disorders is well known to cause severe neurodegenerative phenotypes associated with accumulations of lysosomes and autophagic vacuoles (AVs). Recently, the number of inherited adult-onset neurodegenerative diseases caused by proteins that regulate protein sorting and degradation within the endocytic and autophagic pathways has grown considerably. In this Perspective, we classify a group of neurodegenerative diseases across the lifespan as disorders of lysosomal function, which feature extensive autophagic-endocytic-lysosomal neuropathology and may share mechanisms of neurodegeneration related to degradative failure and lysosomal destabilization. We highlight Alzheimer's disease as a disease within this group and discuss how each of the genes and other risk factors promoting this disease contribute to progressive lysosomal dysfunction and neuronal cell death
PMID: 18497567
ISSN: 1554-8635
CID: 79133

Dystrophic serotonergic axons in neurodegenerative diseases

Azmitia, Efrain C; Nixon, Ralph
Neurodegenerative diseases such as Parkinson's disease (PD), frontal lobe dementia (FLD) and diffuse Lewy-body dementia (DLBD) have diverse neuropathologic features. Here we report that serotonin fibers are dystrophic in the brains of individuals with these three diseases. In neuropathologically normal (control) brains (n=3), serotonin axons immunoreactive (IR) with antibodies against the serotonin transporter (5-HTT) protein were widely distributed in cortex (entorhinal and dorsolateral prefrontal), hippocampus and rostral brainstem. 5-HTT-IR fibers-of-passage appeared thick, smooth, and unbranched in medial forebrain bundle, medial lemniscus and cortex white matter. The terminal branches were fine, highly branched and varicose in substantia nigra, hippocampus and cortical gray matter. In the diseased brains, however, 5-HTT-IR fibers in the forebrain were reduced in number and were frequently bulbous, splayed, tightly clustered and enlarged. Morphometric analysis revealed significant differences in the size distribution of the 5-HTT-IR profiles in dorsolateral prefrontal area between neurodegenerative diseases and controls. Our observations provide direct morphologic evidence for degeneration of human serotonergic axons in the brains of patients with neurodegenerative diseases despite the limited size (n=3 slices for each region (3) from each brain (4), total slices was n=36) and the lack of extensive clinical characterization of the analyzed cohort. This is the first report of dystrophic 5-HTT-IR axons in postmortem human tissue
PMCID:3405553
PMID: 18502405
ISSN: 0006-8993
CID: 79132

Axonal transport rates in vivo are unaffected by tau deletion or overexpression in mice

Yuan, Aidong; Kumar, Asok; Peterhoff, Corrinne; Duff, Karen; Nixon, Ralph A
Elevated tau expression has been proposed as a possible basis for impaired axonal transport in Alzheimer's disease. To address this hypothesis, we analyzed the movement of pulse radiolabeled proteins in vivo along retinal ganglion cell (RGC) axons of mice that lack tau or overexpress human tau isoforms. Here, we show that the global axonal transport rates of slow and fast transport cargoes in axons are not significantly impaired when tau expression is eliminated or increased. In addition, markers of slow transport (neurofilament light subunit) and fast transport (snap25) do not accumulate in retinas and are distributed normally along optic axons in mice that lack or overexpress tau. Finally, ultrastructural analyses revealed no abnormal accumulations of vesicular organelles or neurofilaments in RGC perikarya or axons in mice overexpressing or lacking tau. These results suggest that tau is not essential for axonal transport and that transport rates in vivo are not significantly affected by substantial fluctuations in tau expression
PMCID:2814454
PMID: 18272688
ISSN: 1529-2401
CID: 94106

Rab GTPase gene up regulation within individual cholinergic nucleus basalis neurons correlates with cognitive decline in Alzheimer's disease and mild cognitive impairment [Meeting Abstract]

Ginsberg, S. D.; Che, S.; Counts, S. E.; Wuu, J.; Nixon, R. A.; Mufson, E. J.
BIOSIS:PREV201200148909
ISSN: 1558-3635
CID: 458922

Dysregulation of amyloid precursor protein levels, but not Abeta levels in Ts65Dn mouse brain [Meeting Abstract]

Choi, JHK; Diaz, NS; Mazzella, MJ; Ginsberg, SD; Levy, E; Nixon, RA; Mathews, PM
ORIGINAL:0008402
ISSN: 1552-5260
CID: 463382