Try a new search

Format these results:

Searched for:

person:nixonr01

Total Results:

374


Cortical plasticity in Alzheimer's disease in humans and rodents

Battaglia, Fortunato; Wang, Hoau-Yan; Ghilardi, M Felice; Gashi, Eleonora; Quartarone, Angelo; Friedman, Eitan; Nixon, Ralph A
BACKGROUND: The aim of this study was to determine whether neocortical long-term potentiation (LTP) is deficient in patients with Alzheimer's disease (AD) and in amyloid precursor protein (APP)/presenilin-1 (PS1) mice, an AD animal model. We then ascertained whether this deficit might be paralleled by functional abnormalities of N-methyl-D-aspartate (NMDAR) glutamate receptors. METHODS: We studied neocortical LTP-like plasticity in 10 patients with mild-to-moderate AD and 10 age-matched normal controls using paired associative stimulation (PAS). We assessed neocortical (medial prefrontal cortex and primary motor cortex) and hippocampal LTP in brain slices of symptomatic APP/PS1 mice. NMDAR composition and signaling as well as synaptic calcium influx were determined in motor, prefrontal and hippocampal cortices of APP/PS1 mice. RESULTS: Both AD patients and transgenic animals showed a deficit in NMDAR-dependent forms of neocortical plasticity. Biochemical analysis showed impaired NMDAR function in symptomatic APP/PS1 mice. CONCLUSIONS: Neocortical plasticity is impaired in both patients with AD and APP/PS1 mice. The results of our biochemical studies point to impaired NMDAR function as the most likely cause for the neocortical plasticity deficit in AD
PMID: 17651702
ISSN: 1873-2402
CID: 96868

Autophagy, amyloidogenesis and Alzheimer disease

Nixon, Ralph A
Autophagy is the sole pathway for organelle turnover in cells and is a vital pathway for degrading normal and aggregated proteins, particularly under stress or injury conditions. Recent evidence has shown that the amyloid beta peptide is generated from amyloid beta precursor protein (APP) during autophagic turnover of APP-rich organelles supplied by both autophagy and endocytosis. Abeta generated during normal autophagy is subsequently degraded by lysosomes. Within neurons, autophagosomes and endosomes actively form in synapses and along neuritic processes but efficient clearance of these compartments requires their retrograde transport towards the neuronal cell body, where lysosomes are most concentrated. In Alzheimer disease, the maturation of autophagolysosomes and their retrograde transport are impeded, which leads to a massive accumulation of ;autophagy intermediates' (autophagic vacuoles) within large swellings along dystrophic and degenerating neurites. The combination of increased autophagy induction and defective clearance of Abeta-generating autophagic vacuoles creates conditions favorable for Abeta accumulation in Alzheimer disease
PMID: 18032783
ISSN: 0021-9533
CID: 96867

Cystatin C inhibits amyloid-beta deposition in Alzheimer's disease mouse models

Mi, Weiqian; Pawlik, Monika; Sastre, Magdalena; Jung, Sonia S; Radvinsky, David S; Klein, Andrew M; Sommer, John; Schmidt, Stephen D; Nixon, Ralph A; Mathews, Paul M; Levy, Efrat
Using transgenic mice expressing human cystatin C (encoded by CST3), we show that cystatin C binds soluble amyloid-beta peptide and inhibits cerebral amyloid deposition in amyloid-beta precursor protein (APP) transgenic mice. Cystatin C expression twice that of the endogenous mouse cystatin C was sufficient to substantially diminish amyloid-beta deposition. Thus, cystatin C has a protective role in Alzheimer's disease pathogenesis, and modulation of cystatin C concentrations may have therapeutic implications for the disease
PMID: 18026100
ISSN: 1546-1718
CID: 95389

Alzheimer's presenilin 1 modulates sorting of APP and its carboxyl-terminal fragments in cerebral neurons in vivo

Gandy, Sam; Zhang, Yun-wu; Ikin, Annat; Schmidt, Stephen D; Bogush, Alexey; Levy, Efrat; Sheffield, Roxanne; Nixon, Ralph A; Liao, Francesca-Fang; Mathews, Paul M; Xu, Huaxi; Ehrlich, Michelle E
Studies in continuously cultured cells have established that familial Alzheimer's disease (FAD) mutant presenilin 1 (PS1) delays exit of the amyloid precursor protein (APP) from the trans-Golgi network (TGN). Here we report the first description of PS1-regulated APP trafficking in cerebral neurons in culture and in vivo. Using neurons from transgenic mice or a cell-free APP transport vesicle biogenesis system derived from the TGN of those neurons, we demonstrated that knocking-in an FAD-associated mutant PS1 transgene was associated with delayed kinetics of APP arrival at the cell surface. Apparently, this delay was at least partially attributable to impaired exit of APP from the TGN, which was documented in the cell-free APP transport vesicle biogenesis assay. To extend the study to APP and carboxyl terminal fragment (CTF) trafficking to cerebral neurons in vivo, we performed subcellular fractionation of brains from APP transgenic mice, some of which carried a second transgene encoding an FAD-associated mutant form of PS1. The presence of the FAD mutant PS1 was associated with a slight shift in the subcellular localization of both holoAPP and APP CTFs toward iodixanol density gradient fractions that were enriched in a marker for the TGN. In a parallel set of experiments, we used an APP : furin chimeric protein strategy to test the effect of artificially forcing TGN concentration of an APP : furin chimera that could be a substrate for beta- and gamma-cleavage. This chimeric substrate generated excess Abeta42 when compared with wildtype APP. These data indicate that the presence of an FAD-associated mutant human PS1 transgene is associated with redistribution of the APP and APP CTFs in brain neurons toward TGN-enriched fractions. The chimera experiment suggests that TGN-enrichment of a beta-/gamma-secretase substrate may play an integral role in the action of mutant PS1 to elevate brain levels of Abeta42
PMID: 17630980
ISSN: 0022-3042
CID: 95391

Dysregulation of brain APP in the Ts65Dn Down syndrome mouse [Meeting Abstract]

Choi, JH; Mazzella, MJ; Berger, JD; Cataldo, AM; Ginsberg, SD; Levy, E; Nixon, RA; Mathews, PM
ISI:000248991600315
ISSN: 0022-3042
CID: 74183

Quantitative MRI reveals aging-associated T2 changes in mouse models of Alzheimer's disease

Falangola, M F; Dyakin, V V; Lee, S P; Bogart, A; Babb, J S; Duff, K; Nixon, R; Helpern, J A
In this study, we used MRI to analyze quantitative parametric maps of transverse (T(2)) relaxation times in a longitudinal study of transgenic mice expressing mutant forms of amyloid precursor protein (APP), presenilin (PS1), or both (PS/APP), modeling aspects of Alzheimer's disease (AD). The main goal was to characterize the effects of progressive beta-amyloid accumulation and deposition on the biophysical environment of water and to investigate if these measurements would provide early indirect evidence of AD pathological changes in the brains of these mice. Our results demonstrate that at an early age before beta-amyloid deposition, only PS/APP mice show a reduced T(2) in the hippocampus and cortex compared with wild-type non-transgenic (NTg) controls, whereas a statistically significant within-group aging-associated decrease in T(2) values is seen in the cortex and hippocampus of all three transgenic genotypes (APP, PS/APP, and PS) but not in the NTg controls. In addition, for animals older than 12 months, we confirmed our previous report that only the two genotypes that form amyloid plaques (APP and PS/APP) have significantly reduced T(2) values compared with NTg controls. Thus, T(2) changes in these AD models can precede amyloid deposition or even occur in AD models that do not deposit beta-amyloid (PS mice), but are intensified in the presence of amyloid deposition
PMID: 17451178
ISSN: 0952-3480
CID: 91355

Erratum: Alzheimer's presenilin 1 modulates sorting of APP and its carboxyl-terminal fragments in cerebral neurons in vivo (Journal of Neurochemistry (2007) 102, (619-626)) [Correction]

Gandy, S; Zhang, Y-W; Ikin, A; Schmidt, SD; Bogush, A; Levy, E; Sheffield, R; Nixon, RA; Liao, F-F; Mathews, PM; Xu, H; Ehrlich, ME
SCOPUS:35248872919
ISSN: 0022-3042
CID: 643112

Microarray analysis of rab gene expression levels within individual cholinergic basal forebrain (CBF) neurons in Alzheimer's disease and mild cognitive impairment [Meeting Abstract]

Ginsberg, SD; Che, S; Counts, SE; Nixon, RA; Mufson, EJ
ORIGINAL:0008441
ISSN: 1558-3635
CID: 470992

Endosome dysfunction in Alzheimer's disease: Genetic links and implications for synapse failure and neurodegeneration [Meeting Abstract]

Nixon, RA; Cataldo, A; Mathews, P; Jiang, Y; Ginsberg, SD; Peterhoff, C
ISI:000242215900084
ISSN: 0893-133x
CID: 70911

Characterization of erasin (UBXD2): a new ER protein that promotes ER-associated protein degradation

Liang, Jing; Yin, Chaobo; Doong, Howard; Fang, Shengyun; Peterhoff, Corrine; Nixon, Ralph A; Monteiro, Mervyn J
Ubiquitin regulator-X (UBX) is a discrete protein domain that binds p97/valosin-containing protein (VCP), a molecular chaperone involved in diverse cell processes, including endoplasmic-reticulum-associated protein degradation (ERAD). Here we characterize a human UBX-containing protein, UBXD2, that is highly conserved in mammals, which we have renamed erasin. Biochemical fractionation, immunofluorescence and electron microscopy, and protease protection experiments suggest that erasin is an integral membrane protein of the endoplasmic reticulum and nuclear envelope with both its N- and C-termini facing the cytoplasm or nucleoplasm. Localization of GFP-tagged deletion derivatives of erasin in HeLa cells revealed that a single 21-amino-acid sequence located near the C-terminus is necessary and sufficient for localization of erasin to the endoplasmic reticulum. Immunoprecipitation and GST-pulldown experiments confirmed that erasin binds p97/VCP via its UBX domain. Additional immunoprecipitation assays indicated that erasin exists in a complex with other p97/VCP-associated factors involved in ERAD. Overexpression of erasin enhanced the degradation of the ERAD substrate CD3delta, whereas siRNA-mediated reduction of erasin expression almost completely blocked ERAD. Erasin protein levels were increased by endoplasmic reticulum stress. Immunohistochemical staining of brain tissue from patients with Alzheimer's disease and control subjects revealed that erasin accumulates preferentially in neurons undergoing neurofibrillary degeneration in Alzheimer's disease. These results suggest that erasin may be involved in ERAD and in Alzheimer's disease.
PMID: 16968747
ISSN: 0021-9533
CID: 72831