Searched for: school:SOM
Department/Unit:Neuroscience Institute
TOP2β-Dependent Nuclear DNA Damage Shapes Extracellular Growth Factor Responses via Dynamic AKT Phosphorylation to Control Virus Latency
Hu, Hui-Lan; Shiflett, Lora A; Kobayashi, Mariko; Chao, Moses V; Wilson, Angus C; Mohr, Ian; Huang, Tony T
The mTOR pathway integrates both extracellular and intracellular signals and serves as a central regulator of cell metabolism, growth, survival, and stress responses. Neurotropic viruses, such as herpes simplex virus-1 (HSV-1), also rely on cellular AKT-mTORC1 signaling to achieve viral latency. Here, we define a novel genotoxic response whereby spatially separated signals initiated by extracellular neurotrophic factors and nuclear DNA damage are integrated by the AKT-mTORC1 pathway. We demonstrate that endogenous DNA double-strand breaks (DSBs) mediated by Topoisomerase 2β-DNA cleavage complex (TOP2βcc) intermediates are required to achieve AKT-mTORC1 signaling and maintain HSV-1 latency in neurons. Suppression of host DNA-repair pathways that remove TOP2βcc trigger HSV-1 reactivation. Moreover, perturbation of AKT phosphorylation dynamics by downregulating the PHLPP1 phosphatase led to AKT mis-localization and disruption of DSB-induced HSV-1 reactivation. Thus, the cellular genome integrity and environmental inputs are consolidated and co-opted by a latent virus to balance lifelong infection with transmission.
PMID: 30930055
ISSN: 1097-4164
CID: 3783782
Discharge properties of morphologically identified vestibular neurons recorded during horizontal eye movements in the goldfish
Pastor, A M; Calvo, P M; de la Cruz, R R; Baker, R; Straka, H
Computational capability and connectivity are key elements for understanding how central vestibular neurons contribute to gaze-stabilizing eye movements during self-motion. In the well-characterized and segmentally distributed hindbrain oculomotor network of goldfish, we determined afferent and efferent connections along with discharge patterns of descending octaval nucleus (DO) neurons during different eye motions. Based on activity correlated with horizontal eye and head movements, DO neurons were categorized into two complementary groups that either increased discharge during both contraversive (type II) eye (e) and ipsiversive (type I) head (h) movements (eIIhI) or vice versa (eIhII). Matching time courses of slow-phase eye velocity and corresponding firing rates during prolonged visual and head rotation suggested direct causality in generating extraocular motor commands. The axons of the dominant eIIhI subgroup projected either ipsi- or contralaterally and terminated in the abducens nucleus, Area II, and Area I with additional recurrent collaterals of ipsilaterally projecting neurons within the parent nucleus. Distinct feedforward commissural pathways between bilateral DO neurons likely contribute to the generation of eye velocity signals in eIhII cells. The shared contribution of DO and Area II neurons to eye velocity storage likely represents an ancestral condition in goldfish that is clearly at variance with the task separation between mammalian medial vestibular and prepositus hypoglossi neurons. This difference in signal processing between fish and mammals might correlate with a larger repertoire of visuo-vestibular-driven eye movements in the latter species that potentially required a shift in sensitivity and connectivity within the hindbrain-cerebello-oculomotor network. NEW & NOTEWORTHY We describe the structure and function of neurons within the goldfish descending octaval nucleus. Our findings indicate that eye and head velocity signals are processed by vestibular and Area II velocity storage integrator circuitries whereas the velocity-to-position Area I neural integrator generates eye position solely. This ancestral condition differs from that of mammals, in which vestibular neurons generally lack eye position signals that are processed and stored within the nucleus prepositus hypoglossi.
PMID: 30892975
ISSN: 1522-1598
CID: 3903232
Densities and Laminar Distributions of Kv3.1b-, PV-, GABA-, and SMI-32-Immunoreactive Neurons in Macaque Area V1
Kelly, Jenna G; García-MarÃn, Virginia; Rudy, Bernardo; Hawken, Michael J
The Kv3.1b potassium channel subunit is associated with narrow spike widths and fast-spiking properties. In macaque primary visual cortex (V1), subsets of neurons have previously been found to be Kv3.1b-immunoreactive (ir) but not parvalbumin (PV)-ir or not GABA-ir, suggesting that they may be both fast-spiking and excitatory. This population includes Meynert cells, the large layer 5/6 pyramidal neurons that are also labeled by the neurofilament antibody SMI-32. In the present study, triple immunofluorescence labeling and confocal microscopy were used to measure the distribution of Kv3.1b-ir, non-PV-ir, non-GABA-ir neurons across cortical depth in V1, and to determine whether, like the Meynert cells, other Kv3.1b-ir excitatory neurons were also SMI-32-ir pyramidal neurons. We found that Kv3.1b-ir, non-PV-ir, non-GABA-ir neurons were most prevalent in the M pathway-associated layers 4 Cα and 4B. GABAergic neurons accounted for a smaller fraction (11%) of the total neuronal population across layers 1-6 than has previously been reported. Of Kv3.1b-ir neurons, PV expression reliably indicated GABA expression. Kv3.1b-ir, non-PV-ir neurons varied in SMI-32 coimmunoreactivity. The results suggest the existence of a heterogeneous population of excitatory neurons in macaque V1 with the potential for sustained high firing rates, and these neurons were particularly abundant in layers 4B and 4 Cα.
PMID: 29668858
ISSN: 1460-2199
CID: 3043112
Medial Prefrontal Cortex Population Activity Is Plastic Irrespective of Learning
Singh, Abhinav; Peyrache, Adrien; Humphries, Mark D
The prefrontal cortex (PFC) is thought to learn the relationships between actions and their outcomes. But little is known about what changes to population activity in PFC are specific to learning these relationships. Here we characterize the plasticity of population activity in the medial PFC (mPFC) of male rats learning rules on a Y-maze. First, we show that the population always changes its patterns of joint activity between the periods of sleep either side of a training session on the maze, regardless of successful rule learning during training. Next, by comparing the structure of population activity in sleep and training, we show that this population plasticity differs between learning and nonlearning sessions. In learning sessions, the changes in population activity in post-training sleep incorporate the changes to the population activity during training on the maze. In nonlearning sessions, the changes in sleep and training are unrelated. Finally, we show evidence that the nonlearning and learning forms of population plasticity are driven by different neuron-level changes, with the nonlearning form entirely accounted for by independent changes to the excitability of individual neurons, and the learning form also including changes to firing rate couplings between neurons. Collectively, our results suggest two different forms of population plasticity in mPFC during the learning of action-outcome relationships: one a persistent change in population activity structure decoupled from overt rule-learning, and the other a directional change driven by feedback during behavior.SIGNIFICANCE STATEMENT The PFC is thought to represent our knowledge about what action is worth doing in which context. But we do not know how the activity of neurons in PFC collectively changes when learning which actions are relevant. Here we show, in a trial-and-error task, that population activity in PFC is persistently changing, regardless of learning. Only during episodes of clear learning of relevant actions are the accompanying changes to population activity carried forward into sleep, suggesting a long-lasting form of neural plasticity. Our results suggest that representations of relevant actions in PFC are acquired by reward imposing a direction onto ongoing population plasticity.
PMCID:6495133
PMID: 30814311
ISSN: 1529-2401
CID: 4173582
The Effect of Hearing Aid Bandwidth and Configuration of Hearing Loss on Bimodal Speech Recognition in Cochlear Implant Users
Neuman, Arlene C; Zeman, Annette; Neukam, Jonathan; Wang, Binhuan; Svirsky, Mario A
OBJECTIVES/OBJECTIVE:(1) To determine the effect of hearing aid (HA) bandwidth on bimodal speech perception in a group of unilateral cochlear implant (CI) patients with diverse degrees and configurations of hearing loss in the nonimplanted ear, (2) to determine whether there are demographic and audiometric characteristics that would help to determine the appropriate HA bandwidth for a bimodal patient. DESIGN/METHODS:Participants were 33 experienced bimodal device users with postlingual hearing loss. Twenty three of them had better speech perception with the CI than the HA (CI>HA group) and 10 had better speech perception with the HA than the CI (HA>CI group). Word recognition in sentences (AzBio sentences at +10 dB signal to noise ratio presented at 0° azimuth) and in isolation [CNC (consonant-nucleus-consonant) words] was measured in unimodal conditions [CI alone or HAWB, which indicates HA alone in the wideband (WB) condition] and in bimodal conditions (BMWB, BM2k, BM1k, and BM500) as the bandwidth of an actual HA was reduced from WB to 2 kHz, 1 kHz, and 500 Hz. Linear mixed-effect modeling was used to quantify the relationship between speech recognition and listening condition and to assess how audiometric or demographic covariates might influence this relationship in each group. RESULTS:For the CI>HA group, AzBio scores were significantly higher (on average) in all bimodal conditions than in the best unimodal condition (CI alone) and were highest at the BMWB condition. For CNC scores, on the other hand, there was no significant improvement over the CI-alone condition in any of the bimodal conditions. The opposite pattern was observed in the HA>CI group. CNC word scores were significantly higher in the BM2k and BMWB conditions than in the best unimodal condition (HAWB), but none of the bimodal conditions were significantly better than the best unimodal condition for AzBio sentences (and some of the restricted bandwidth conditions were actually worse). Demographic covariates did not interact significantly with bimodal outcomes, but some of the audiometric variables did. For CI>HA participants with a flatter audiometric configuration and better mid-frequency hearing, bimodal AzBio scores were significantly higher than the CI-alone score with the WB setting (BMWB) but not with other bandwidths. In contrast, CI>HA participants with more steeply sloping hearing loss and poorer mid-frequency thresholds (≥82.5 dB) had significantly higher bimodal AzBio scores in all bimodal conditions, and the BMWB did not differ significantly from the restricted bandwidth conditions. HA>CI participants with mild low-frequency hearing loss showed the highest levels of bimodal improvement over the best unimodal condition on CNC words. They were also less affected by HA bandwidth reduction compared with HA>CI participants with poorer low-frequency thresholds. CONCLUSIONS:The pattern of bimodal performance as a function of the HA bandwidth was found to be consistent with the degree and configuration of hearing loss for both patients with CI>HA performance and for those with HA>CI performance. Our results support fitting the HA for all bimodal patients with the widest bandwidth consistent with effective audibility.
PMID: 30067559
ISSN: 1538-4667
CID: 3217482
Chemoreflex failure and sleep-disordered breathing in familial dysautonomia: Implications for sudden death during sleep
Palma, Jose-Alberto; Gileles-Hillel, Alex; Norcliffe-Kaufmann, Lucy; Kaufmann, Horacio
Familial dysautonomia (Riley-Day syndrome, hereditary sensory and autonomic neuropathy type III) is a rare autosomal recessive disease characterized by impaired development of primary sensory and autonomic neurons resulting in a severe neurological phenotype, which includes arterial baroreflex and chemoreflex failure with high frequency of sleep-disordered breathing and sudden death during sleep. Although a rare disease, familial dysautonomia represents a unique template to study the interactions between sleep-disordered breathing and abnormal chemo- and baroreflex function. In patients with familial dysautonomia, ventilatory responses to hypercapnia are reduced, and to hypoxia are almost absent. In response to hypoxia, these patients develop paradoxical hypoventilation, hypotension, bradycardia, and potentially, death. Impaired ventilatory control due to chemoreflex failure acquires special relevance during sleep when conscious control of respiration withdraws. Overall, almost all adult (85%) and pediatric (95%) patients have some degree of sleep-disordered breathing. Obstructive apnea events are more frequent in adults, whereas central apnea events are more severe and frequent in children. The annual incidence rate of sudden death during sleep in patients with familial dysautonomia is 3.4 per 1000 person-year, compared to 0.5-1 per 1000 person-year of sudden unexpected death in epilepsy. This review summarizes recent developments in the understanding of sleep-disordered breathing in patients with familial dysautonomia, the risk factors for sudden death during sleep, and the specific interventions that could prevent it.
PMID: 30890343
ISSN: 1872-7484
CID: 3735052
Multiplexed detection of proteins, transcriptomes, clonotypes and CRISPR perturbations in single cells
Mimitou, Eleni P; Cheng, Anthony; Montalbano, Antonino; Hao, Stephanie; Stoeckius, Marlon; Legut, Mateusz; Roush, Timothy; Herrera, Alberto; Papalexi, Efthymia; Ouyang, Zhengqing; Satija, Rahul; Sanjana, Neville E; Koralov, Sergei B; Smibert, Peter
Multimodal single-cell assays provide high-resolution snapshots of complex cell populations, but are mostly limited to transcriptome plus an additional modality. Here, we describe expanded CRISPR-compatible cellular indexing of transcriptomes and epitopes by sequencing (ECCITE-seq) for the high-throughput characterization of at least five modalities of information from each single cell. We demonstrate application of ECCITE-seq to multimodal CRISPR screens with robust direct single-guide RNA capture and to clonotype-aware multimodal phenotyping of cancer samples.
PMID: 31011186
ISSN: 1548-7105
CID: 3821452
Measuring intra-axonal T2 in white matter with direction-averaged diffusion MRI
McKinnon, Emilie T; Jensen, Jens H
PURPOSE:) in white matter can be measured with direction-averaged diffusion MRI. METHODS:for a selected set of assumed intra-axonal diffusivities. RESULTS:values across white matter regions for several plausible choices of the intra-axonal diffusivity. CONCLUSION:and varies considerably with anatomical region.
PMCID:6686904
PMID: 30506959
ISSN: 1522-2594
CID: 4452242
Population net benefit of prostate MRI with high spatiotemporal resolution contrast-enhanced imaging: A decision curve analysis
Prabhu, Vinay; Rosenkrantz, Andrew B; Otazo, Ricardo; Sodickson, Daniel K; Kang, Stella K
BACKGROUND:The value of dynamic contrast-enhanced (DCE) sequences in prostate MRI compared with noncontrast MRI is controversial. PURPOSE/OBJECTIVE:To evaluate the population net benefit of risk stratification using DCE-MRI for detection of high-grade prostate cancer (HGPCA), with or without high spatiotemporal resolution DCE imaging. STUDY TYPE/METHODS:Decision curve analysis. POPULATION/METHODS:Previously published patient studies on MRI for HGPCA detection, one using DCE with golden-angle radial sparse parallel (GRASP) images and the other using standard DCE-MRI. FIELD STRENGTH/SEQUENCE/UNASSIGNED:GRASP or standard DCE-MRI at 3 T. ASSESSMENT/RESULTS:Each study reported the proportion of lesions with HGPCA in each Prostate Imaging Reporting and Data System version 2 (PI-RADS v2) category (1-5), before and after reclassification of peripheral zone lesions from PI-RADS 3-4 based on contrast-enhanced images. This additional risk stratifying information was translated to population net benefit, when biopsy was hypothetically performed for: all lesions, no lesions, PI-RADS ≥3 (using NC-MRI), and PI-RADS ≥4 on DCE. STATISTICAL TESTS/UNASSIGNED:Decision curve analysis was performed for both GRASP and standard DCE-MRI data, translating the avoidance of unnecessary biopsies and detection of HGPCA to population net benefit. We standardized net benefit values for HGPCA prevalence and graphically summarized the comparative net benefit of biopsy strategies. RESULTS:For a clinically relevant range of risk thresholds for HGPCA (>11%), GRASP DCE-MRI with biopsy of PI-RADS ≥4 lesions provided the highest net benefit, while biopsy of PI-RADS ≥3 lesions provided highest net benefit at low personal risk thresholds (2-11%). In the same range of risk thresholds using standard DCE-MRI, the optimal strategy was biopsy for all lesions (0-15% risk threshold) or PI-RADS ≥3 on NC-MRI (16-33% risk threshold). DATA CONCLUSION/UNASSIGNED:GRASP DCE-MRI may potentially enable biopsy of PI-RADS ≥4 lesions, providing relatively preserved detection of HGPCA and avoidance of unnecessary biopsies compared with biopsy of all PI-RADS ≥3 lesions. J. Magn. Reson. Imaging 2019.
PMID: 30629317
ISSN: 1522-2586
CID: 3579942
Rapid volumetric optoacoustic imaging of neural dynamics across the mouse brain
Gottschalk, Sven; Degtyaruk, Oleksiy; Mc Larney, Benedict; Rebling, Johannes; Hutter, Magdalena Anastasia; Deán-Ben, Xosé LuÃs; Shoham, Shy; Razansky, Daniel
Efforts to scale neuroimaging towards the direct visualization of mammalian brain-wide neuronal activity have faced major challenges. Although high-resolution optical imaging of the whole brain in small animals has been achieved ex vivo, the real-time and direct monitoring of large-scale neuronal activity remains difficult, owing to the performance gap between localized, largely invasive, optical microscopy of rapid, cellular-resolved neuronal activity and whole-brain macroscopy of slow haemodynamics and metabolism. Here, we demonstrate both ex vivo and non-invasive in vivo functional optoacoustic (OA) neuroimaging of mice expressing the genetically encoded calcium indicator GCaMP6f. The approach offers rapid, high-resolution three-dimensional snapshots of whole-brain neuronal activity maps using single OA excitations, and of stimulus-evoked slow haemodynamics and fast calcium activity in the presence of strong haemoglobin background absorption. By providing direct neuroimaging at depths and spatiotemporal resolutions superior to optical fluorescence imaging, functional OA neuroimaging bridges the gap between functional microscopy and whole-brain macroscopy.
PMID: 30992553
ISSN: 2157-846x
CID: 3808812