Try a new search

Format these results:

Searched for:

school:SOM

Department/Unit:Neuroscience Institute

Total Results:

13474


Measuring intra-axonal T2 in white matter with direction-averaged diffusion MRI

McKinnon, Emilie T; Jensen, Jens H
PURPOSE:) in white matter can be measured with direction-averaged diffusion MRI. METHODS:for a selected set of assumed intra-axonal diffusivities. RESULTS:values across white matter regions for several plausible choices of the intra-axonal diffusivity. CONCLUSION:and varies considerably with anatomical region.
PMCID:6686904
PMID: 30506959
ISSN: 1522-2594
CID: 4452242

ECS Dynamism and Its Influence on Neuronal Excitability and Seizures

Colbourn, Robert; Naik, Aditi; Hrabetova, Sabina
Seizure activity is governed by changes in normal neuronal physiology that lead to a state of neuronal hyperexcitability and synchrony. There is a growing body of research and evidence suggesting that alterations in the volume fraction (α) of the brain's extracellular space (ECS) have the ability to prolong or even initiate seizures. These ictogenic effects likely occur due to the ECS volume being critically important in determining both the concentration of neuroactive substances contained within it, such as ions and neurotransmitters, and the effect of electric field-mediated interactions between neurons. Changes in the size of the ECS likely both precede a seizure, assisting in its initiation, and occur during a seizure, assisting in its maintenance. Different cellular ion and water transporters and channels are essential mediators in determining neuronal excitability and synchrony and can do so through alterations in ECS volume and/or through non-ECS volume related mechanisms. This review will parse out the relationships between how the ECS volume changes during normal physiology and seizures, how those changes might alter neuronal physiology to promote seizures, and what ion and water transporters and channels are important in linking ECS volume changes and seizures.
PMID: 30879174
ISSN: 1573-6903
CID: 3748402

Multiplexed detection of proteins, transcriptomes, clonotypes and CRISPR perturbations in single cells

Mimitou, Eleni P; Cheng, Anthony; Montalbano, Antonino; Hao, Stephanie; Stoeckius, Marlon; Legut, Mateusz; Roush, Timothy; Herrera, Alberto; Papalexi, Efthymia; Ouyang, Zhengqing; Satija, Rahul; Sanjana, Neville E; Koralov, Sergei B; Smibert, Peter
Multimodal single-cell assays provide high-resolution snapshots of complex cell populations, but are mostly limited to transcriptome plus an additional modality. Here, we describe expanded CRISPR-compatible cellular indexing of transcriptomes and epitopes by sequencing (ECCITE-seq) for the high-throughput characterization of at least five modalities of information from each single cell. We demonstrate application of ECCITE-seq to multimodal CRISPR screens with robust direct single-guide RNA capture and to clonotype-aware multimodal phenotyping of cancer samples.
PMID: 31011186
ISSN: 1548-7105
CID: 3821452

State-aware detection of sensory stimuli in the cortex of the awake mouse

Sederberg, Audrey J; Pala, Aurélie; Zheng, He J V; He, Biyu J; Stanley, Garrett B
Cortical responses to sensory inputs vary across repeated presentations of identical stimuli, but how this trial-to-trial variability impacts detection of sensory inputs is not fully understood. Using multi-channel local field potential (LFP) recordings in primary somatosensory cortex (S1) of the awake mouse, we optimized a data-driven cortical state classifier to predict single-trial sensory-evoked responses, based on features of the spontaneous, ongoing LFP recorded across cortical layers. Our findings show that, by utilizing an ongoing prediction of the sensory response generated by this state classifier, an ideal observer improves overall detection accuracy and generates robust detection of sensory inputs across various states of ongoing cortical activity in the awake brain, which could have implications for variability in the performance of detection tasks across brain states.
PMCID:6561583
PMID: 31150385
ISSN: 1553-7358
CID: 3944992

Developing a neurobehavioral animal model of poverty: Drawing cross-species connections between environments of scarcity-adversity, parenting quality, and infant outcome

Perry, Rosemarie E; Finegood, Eric D; Braren, Stephen H; Dejoseph, Meriah L; Putrino, David F; Wilson, Donald A; Sullivan, Regina M; Raver, C Cybele; Blair, Clancy
Children reared in impoverished environments are at risk for enduring psychological and physical health problems. Mechanisms by which poverty affects development, however, remain unclear. To explore one potential mechanism of poverty's impact on social-emotional and cognitive development, an experimental examination of a rodent model of scarcity-adversity was conducted and compared to results from a longitudinal study of human infants and families followed from birth (N = 1,292) who faced high levels of poverty-related scarcity-adversity. Cross-species results supported the hypothesis that altered caregiving is one pathway by which poverty adversely impacts development. Rodent mothers assigned to the scarcity-adversity condition exhibited decreased sensitive parenting and increased negative parenting relative to mothers assigned to the control condition. Furthermore, scarcity-adversity reared pups exhibited decreased developmental competence as indicated by disrupted nipple attachment, distress vocalization when in physical contact with an anesthetized mother, and reduced preference for maternal odor with corresponding changes in brain activation. Human results indicated that scarcity-adversity was inversely correlated with sensitive parenting and positively correlated with negative parenting, and that parenting fully mediated the association of poverty-related risk with infant indicators of developmental competence. Findings are discussed from the perspective of the usefulness of bidirectional-translational research to inform interventions for at-risk families.
PMID: 29606185
ISSN: 1469-2198
CID: 3025252

Chemoreflex failure and sleep-disordered breathing in familial dysautonomia: Implications for sudden death during sleep

Palma, Jose-Alberto; Gileles-Hillel, Alex; Norcliffe-Kaufmann, Lucy; Kaufmann, Horacio
Familial dysautonomia (Riley-Day syndrome, hereditary sensory and autonomic neuropathy type III) is a rare autosomal recessive disease characterized by impaired development of primary sensory and autonomic neurons resulting in a severe neurological phenotype, which includes arterial baroreflex and chemoreflex failure with high frequency of sleep-disordered breathing and sudden death during sleep. Although a rare disease, familial dysautonomia represents a unique template to study the interactions between sleep-disordered breathing and abnormal chemo- and baroreflex function. In patients with familial dysautonomia, ventilatory responses to hypercapnia are reduced, and to hypoxia are almost absent. In response to hypoxia, these patients develop paradoxical hypoventilation, hypotension, bradycardia, and potentially, death. Impaired ventilatory control due to chemoreflex failure acquires special relevance during sleep when conscious control of respiration withdraws. Overall, almost all adult (85%) and pediatric (95%) patients have some degree of sleep-disordered breathing. Obstructive apnea events are more frequent in adults, whereas central apnea events are more severe and frequent in children. The annual incidence rate of sudden death during sleep in patients with familial dysautonomia is 3.4 per 1000 person-year, compared to 0.5-1 per 1000 person-year of sudden unexpected death in epilepsy. This review summarizes recent developments in the understanding of sleep-disordered breathing in patients with familial dysautonomia, the risk factors for sudden death during sleep, and the specific interventions that could prevent it.
PMID: 30890343
ISSN: 1872-7484
CID: 3735052

G Protein-Coupled Receptors are Dynamic Regulators of Digestion and Targets for Digestive Diseases

Canals, Meritxell; Poole, Daniel P; Veldhuis, Nicholas A; Schmidt, Brian L; Bunnett, Nigel W
G protein-coupled receptors (GPCRs) are the largest family of transmembrane signaling proteins. Within the gastrointestinal tract, GPCRs expressed by epithelial cells sense contents of the lumen, and GPCRs expressed by epithelial cells, myocytes, neurons, and immune cells participate in communication amongst cells. GPCRs control digestion, mediate digestive diseases, and coordinate repair and growth. GPCRs are the target of over one third of therapeutic drugs, including many drugs used to treat digestive diseases. Recent advances in structural, chemical, and cell biology research have revealed that GPCRs are not static binary switches that operate from the plasma membrane to control a defined set of intracellular signals. Rather, GPCRs are dynamic signaling proteins that adopt distinct conformations and subcellular distributions when associated with different ligands and intracellular effectors. An understanding of the dynamic nature of GPCRs has provided insights into the mechanism of activation and signaling of GPCRs, and has revealed opportunities for drug discovery. We review the allosteric modulation, biased agonism, oligomerization, and compartmentalized signaling of GPCRs that control digestion and digestive diseases. We highlight the implications of these concepts for the development of selective and effective drugs to treat diseases of the gastrointestinal tract.
PMID: 30771352
ISSN: 1528-0012
CID: 3655912

CALCIUM CURRENTS FACILITATE SAFE CONDUCTION IN FHF2 KNOCKOUT MICE [Meeting Abstract]

Santucci, J III; S; Shekhar, A; Solinas, S; Redel-Traub, G; Narke, D; Zhang, J; Goldfarb, M; Park, D S; Fishman, G I
Background: Cardiomyocytes are dependent on inward sodium currents for rapid phase 0 depolarization to initiate normal excitation-contraction coupling. In cardiovascular diseases where inward sodium currents are decreased, such as Brugada syndrome, calcium currents are thought to safeguard against conduction failure. Consequently, it has been suggested that combined sodium and calcium channel blockade may be more effective in unmasking Brugada syndrome. Fibroblast growth factor homologous factor 2 (FHF2) binds to sodium channels and modulates their function. Loss of FHF2 reduces inward sodium currents secondary to accelerated rates of both closed-state and open-state sodium channel inactivation. As a result, FHF2 KO mice are susceptible to conduction disturbances at elevated temperatures, with electrocardiogram tracings appearing similar to those seen in Brugada syndrome.
EMBASE:2002296008
ISSN: 1556-3871
CID: 4004102

Rapid volumetric optoacoustic imaging of neural dynamics across the mouse brain

Gottschalk, Sven; Degtyaruk, Oleksiy; Mc Larney, Benedict; Rebling, Johannes; Hutter, Magdalena Anastasia; Deán-Ben, Xosé Luís; Shoham, Shy; Razansky, Daniel
Efforts to scale neuroimaging towards the direct visualization of mammalian brain-wide neuronal activity have faced major challenges. Although high-resolution optical imaging of the whole brain in small animals has been achieved ex vivo, the real-time and direct monitoring of large-scale neuronal activity remains difficult, owing to the performance gap between localized, largely invasive, optical microscopy of rapid, cellular-resolved neuronal activity and whole-brain macroscopy of slow haemodynamics and metabolism. Here, we demonstrate both ex vivo and non-invasive in vivo functional optoacoustic (OA) neuroimaging of mice expressing the genetically encoded calcium indicator GCaMP6f. The approach offers rapid, high-resolution three-dimensional snapshots of whole-brain neuronal activity maps using single OA excitations, and of stimulus-evoked slow haemodynamics and fast calcium activity in the presence of strong haemoglobin background absorption. By providing direct neuroimaging at depths and spatiotemporal resolutions superior to optical fluorescence imaging, functional OA neuroimaging bridges the gap between functional microscopy and whole-brain macroscopy.
PMID: 30992553
ISSN: 2157-846x
CID: 3808812

Necl-4/Cadm4 recruits Par-3 to the Schwann cell adaxonal membrane

Meng, Xiaosong; Maurel, Patrice; Lam, Isabel; Heffernan, Corey; Stiffler, Michael A; McBeath, Gavin; Salzer, James L
Interactions between axons and Schwann cells are essential for the acquisition of Schwann cell radial and longitudinal polarity and myelin sheath assembly. In the internode, the largest of these longitudinal domains, axon-Schwann cell interactions are mediated by the Nectin-like (Necl) cell adhesion proteins, also known as SynCAMs or Cadms. In particular, Necl-1/Cadm3 expressed on the axon surface binds to Necl-4/Cadm4 expressed along the adaxonal membrane of myelinating Schwann cells. Necl-4 promotes myelination in vitro and is required for the timely onset of myelination and the fidelity of the organization of the myelin sheath and the internode in vivo. A key question is the identity of the downstream effectors of Necl-4 that mediate its effects. The cytoplasmic terminal region (CTR) of Necl-4 contains a PDZ-domain binding motif. Accordingly, we used the CTR of Necl-4 in an unbiased proteomic screen of PDZ-domain proteins. We identify Par-3, a multi-PDZ domain containing protein of the Par-aPKC polarity complex previously implicated in myelination, as an interacting protein. Necl-4 and Par-3 are colocalized along the inner Schwann cell membrane and coprecipitate from Schwann cell lysates. The CTR of Necl-4 binds to the first PDZ domain of Par-3 thereby recruiting Par-3 to sites of Necl-4/Necl-1 interaction. Knockdown of Necl-4 perturbs Par-3 localization to the inner membrane of Schwann cells in myelinating co-cultures. These findings implicate interactions of Necl-1/Necl-4 in the recruitment of Par-3 to the Schwann cell adaxonal membrane and the establishment of Schwann cell radial polarity.
PMID: 30585357
ISSN: 1098-1136
CID: 3560382