Searched for: school:SOM
Department/Unit:Neuroscience Institute
Analysis of microisolated frontal cortex excitatory layer III and V pyramidal neurons reveals a neurodegenerative phenotype in individuals with Down syndrome
Alldred, Melissa J; Pidikiti, Harshitha; Ibrahim, Kyrillos W; Lee, Sang Han; Heguy, Adriana; Hoffman, Gabriel E; Roussos, Panos; Wisniewski, Thomas; Wegiel, Jerzy; Stutzmann, Grace E; Mufson, Elliott J; Ginsberg, Stephen D
We elucidated the molecular fingerprint of vulnerable excitatory neurons within select cortical lamina of individuals with Down syndrome (DS) for mechanistic understanding and therapeutic potential that also informs Alzheimer's disease (AD) pathophysiology. Frontal cortex (BA9) layer III (L3) and layer V (L5) pyramidal neurons were microisolated from postmortem human DS and age- and sex-matched controls (CTR) to interrogate differentially expressed genes (DEGs) and key biological pathways relevant to neurodegenerative programs. We identified > 2300 DEGs exhibiting convergent dysregulation of gene expression in both L3 and L5 pyramidal neurons in individuals with DS versus CTR subjects. DEGs included over 100 triplicated human chromosome 21 genes in L3 and L5 neurons, demonstrating a trisomic neuronal karyotype in both laminae. In addition, thousands of other DEGs were identified, indicating gene dysregulation is not limited to trisomic genes in the aged DS brain, which we postulate is relevant to AD pathobiology. Convergent L3 and L5 DEGs highlighted pertinent biological pathways and identified key pathway-associated targets likely underlying corticocortical neurodegeneration and related cognitive decline in individuals with DS. Select key DEGs were interrogated as potential hub genes driving dysregulation, namely the triplicated DEGs amyloid precursor protein (APP) and superoxide dismutase 1 (SOD1), along with key signaling DEGs including mitogen activated protein kinase 1 and 3 (MAPK1, MAPK3) and calcium calmodulin dependent protein kinase II alpha (CAMK2A), among others. Hub DEGs determined from multiple pathway analyses identified potential therapeutic candidates for amelioration of cortical neuron dysfunction and cognitive decline in DS with translational relevance to AD.
PMID: 39105932
ISSN: 1432-0533
CID: 5696772
Changes in forced vital capacity over ≤ 13 years among patients with late-onset Pompe disease treated with alglucosidase alfa: new modeling of real-world data from the Pompe Registry
Berger, Kenneth I; Chien, Yin-Hsiu; Dubrovsky, Alberto; Kishnani, Priya S; Llerena, Juan C; Neilan, Edward; Roberts, Mark; Sheng, Bun; Batista, Julie L; Periquet, Magali; Wilson, Kathryn M; van der Ploeg, Ans T
BACKGROUND:Chronic respiratory insufficiency from progressive muscle weakness causes morbidity and mortality in late-onset Pompe disease (LOPD). Previous Pompe Registry (NCT00231400) analyses for ≤ 5 years' alglucosidase alfa treatment showed a single linear time trend of stable forced vital capacity (FVC) % predicted. METHODS:To assess longer term Pompe Registry data, piecewise linear mixed model regression analyses estimated FVC% predicted trajectories in invasive-ventilator-free patients with LOPD aged ≥ 5 years. We estimated annual FVC change 0-6 months, > 6 months-5 years, and > 5-13 years from treatment initiation, adjusting for baseline age, sex, and non-invasive ventilation. FINDINGS/RESULTS: = 0.0654) and were less steep than published natural history slopes (-1% to -4.6%/year). Estimated individual slopes were ≥ 0%/year in 96.1%, 30.3%, and 13.2% of patients during the 0-6 month, > 6 month-5 year, and > 5-13 year periods, respectively. CONCLUSION/CONCLUSIONS:These real-world data indicate an alglucosidase alfa benefit on FVC trajectory that persists at least 13 years compared with published natural history data. Nevertheless, unmet need remains since most individuals demonstrate lung function decline 5 years after initiating treatment. Whether altered FVC trajectory impacts respiratory failure incidence remains undetermined. TRIAL REGISTRATION/BACKGROUND:This study was registered (NCT00231400) on ClinicalTrials.gov on September 30, 2005, retrospectively registered.
PMID: 38896264
ISSN: 1432-1459
CID: 5672132
Arrhythmia Research at a Tipping Point: The Need for Disruptive Science and Technology
Wang, Paul J; Fishman, Glenn I; Eckhardt, Lee; Wu, Joseph C; Delmar, Mario; Chung, Mina K; Patton, Kristen K; Russo, Andrea M; Albert, Christine M; Narayan, Sanjiv M
PMID: 39034923
ISSN: 1941-3084
CID: 5680232
Prevention of Post-Mastectomy Pain Syndrome: A Review of Recent Literature on Perioperative Interventions
Wu, Rachel R; Katz, Simon; Wang, Jing; Doan, Lisa V
PURPOSE OF REVIEW/OBJECTIVE:Up to 60% of breast cancer patients continue to experience pain three months or more after surgery, with 15 to 25% reporting moderate to severe pain. Post-mastectomy pain syndrome (PMPS) places a high burden on patients. We reviewed recent studies on perioperative interventions to prevent PMPS incidence and severity. RECENT FINDINGS/RESULTS:Recent studies on pharmacologic and regional anesthetic interventions were reviewed. Only nine of the twenty-three studies included reported a significant improvement in PMPS incidence and/or severity, sometimes with mixed results for similar interventions. Evidence for prevention of PMPS is mixed. Further investigation of impact of variations in dosing is warranted. In addition, promising newer interventions for prevention of PMPS such as cryoneurolysis of intercostal nerves and stellate ganglion block need confirmatory studies.
PMID: 38814502
ISSN: 1534-6269
CID: 5663762
Early-life prefrontal cortex inhibition and early-life stress lead to long-lasting behavioral, transcriptional, and physiological impairments
Menezes, Edênia C; Geiger, Heather; Abreu, Fabiula F; Rachmany, Lital; Wilson, Donald A; Alldred, Melissa J; Castellanos, Francisco X; Fu, Rui; Sargin, Derya; Corvelo, André; Teixeira, Cátia M
Early-life stress has been linked to multiple neurodevelopmental and neuropsychiatric deficits. Our previous studies have linked maternal presence/absence from the nest in developing rat pups to changes in prefrontal cortex (PFC) activity. Furthermore, we have shown that these changes are modulated by serotonergic signaling. Here we test whether changes in PFC activity during early life affect the developing cortex leading to behavioral alterations in the adult. We show that inhibiting the PFC of mouse pups leads to cognitive deficits in the adult comparable to those seen following maternal separation. Moreover, we show that activating the PFC during maternal separation can prevent these behavioral deficits. To test how maternal separation affects the transcriptional profile of the PFC we performed single-nucleus RNA-sequencing. Maternal separation led to differential gene expression almost exclusively in inhibitory neurons. Among others, we found changes in GABAergic and serotonergic pathways in these interneurons. Interestingly, both maternal separation and early-life PFC inhibition led to changes in physiological responses in prefrontal activity to GABAergic and serotonergic antagonists that were similar to the responses of more immature brains. Prefrontal activation during maternal separation prevented these changes. These data point to a crucial role of PFC activity during early life in behavioral expression in adulthood.
PMID: 38486048
ISSN: 1476-5578
CID: 5644132
Unraveling cysteine deficiency-associated rapid weight loss
Varghese, Alan; Gusarov, Ivan; Gamallo-Lana, Begoña; Dolgonos, Daria; Mankan, Yatin; Shamovsky, Ilya; Phan, Mydia; Jones, Rebecca; Gomez-Jenkins, Maria; White, Eileen; Wang, Rui; Jones, Drew; Papagiannakopoulos, Thales; Pacold, Michael E; Mar, Adam C; Littman, Dan R; Nudler, Evgeny
Forty percent of the US population and 1 in 6 individuals worldwide are obese, and the incidence of this disease is surging globally1,2. Various dietary interventions, including carbohydrate and fat restriction, and more recently amino acid restriction, have been explored to combat this epidemic3-6. We sought to investigate the impact of removing individual amino acids on the weight profiles of mice. Compared to essential amino acid restriction, induction of conditional cysteine restriction resulted in the most dramatic weight loss, amounting to 20% within 3 days and 30% within one week, which was readily reversed. This weight loss occurred despite the presence of substantial cysteine reserves stored in glutathione (GSH) across various tissues7. Further analysis demonstrated that the weight reduction primarily stemmed from an increase in the utilization of fat mass, while locomotion, circadian rhythm and histological appearance of multiple other tissues remained largely unaffected. Cysteine deficiency activated the integrated stress response (ISR) and NRF2-mediated oxidative stress response (OSR), which amplify each other, leading to the induction of GDF15 and FGF21, hormones associated with increased lipolysis, energy homeostasis and food aversion8-10. We additionally observed rapid tissue coenzyme A (CoA) depletion, resulting in energetically inefficient anaerobic glycolysis and TCA cycle, with sustained urinary excretion of pyruvate, orotate, citrate, α-ketoglutarate, nitrogen rich compounds and amino acids. In summary, our investigation highlights that cysteine restriction, by depleting GSH and CoA, exerts a maximal impact on weight loss, metabolism, and stress signaling compared to other amino acid restrictions. These findings may pave the way for innovative strategies for addressing a range of metabolic diseases and the growing obesity crisis.
PMCID:11312522
PMID: 39131293
ISSN: 2692-8205
CID: 5688592
Anti-tau single domain antibodies clear pathological tau and attenuate its toxicity and related functional defects
Nair, Sudershana; Jiang, Yixiang; Marchal, Isabella S; Chernobelsky, Elizabeth; Huang, Huai-Wei; Suh, Sarah; Pan, Ruimin; Kong, Xiang-Peng; Ryoo, Hyung Don; Sigurdsson, Einar M
Tauopathies are a group of neurodegenerative diseases characterized by the presence of tau inclusions. We have developed over fifty anti-tau single-domain antibodies (sdAbs) derived from phage display libraries of a llama immunized with recombinant and pathological tau immunogens. We examined the therapeutic potential of four of these sdAbs in a Drosophila tauopathy model following their transgenic expression either in all neurons or neuronal subtypes. Three of these sdAbs showed therapeutic potential in various assays, effectively clearing pathological tau and attenuating or preventing tau-induced phenotypes that typically manifest as defects in neuronal axonal transport, neurodegeneration, functional impairments, and shortened lifespan. Of these three, one sdAb was superior in every assay, which may at least in part be attributed to its tau-binding epitope. These findings support its development as a gene therapy for tauopathies.
PMCID:11289317
PMID: 39079958
ISSN: 2041-4889
CID: 5696382
The vestibulospinal nucleus is a locus of balance development
Hamling, Kyla R; Harmon, Katherine; Kimura, Yukiko; Higashijima, Shin-Ichi; Schoppik, David
Mature vertebrates maintain posture using vestibulospinal neurons that transform sensed in-stability into reflexive commands to spinal motor circuits. Postural stability improves across development. However, due to the complexity of terrestrial locomotion, vestibulospinal con-tributions to postural refinement in early life remain unexplored. Here we leveraged the relative simplicity of underwater locomotion to quantify the postural consequences of losing vestibulospinal neurons during development in larval zebrafish of undifferentiated sex. By comparing posture at two timepoints, we discovered that later lesions of vestibulospinal neu-rons led to greater instability. Analysis of thousands of individual swim bouts revealed that lesions disrupted movement timing and corrective reflexes without impacting swim kinemat-ics, and that this effect was particularly strong in older larvae. Using a generative model of swimming, we showed how these disruptions could account for the increased postural variability at both timepoints. Finally, late lesions disrupted the fin/trunk coordination observed in older larvae, linking vestibulospinal neurons to postural control schemes used to navigate in depth. Since later lesions were considerably more disruptive to postural sta-bility, we conclude that vestibulospinal contributions to balance increase as larvae mature. Vestibulospinal neurons are highly conserved across vertebrates; we therefore propose that they are a substrate for developmental improvements to postural control.Significance Statement Many animals experience balance improvements during early life. Mature vertebrates use vestibulospinal neurons to transform sensed instability into postural corrections. To under-stand if/how these neurons shape postural development, we ablated them at two develop-mentally important timepoints in larval zebrafish. Loss of vestibulospinal neurons disrupted specific stabilizing behaviors (swim timing, tilt correction, and fin/body coordination) more profoundly in older fish. We conclude that postural development happens in part by changes to vestibulospinal neurons - a significant step towards understanding how developing brains gain the ability to balance.
PMID: 38777599
ISSN: 1529-2401
CID: 5654762
Contributions of cortical neuron firing patterns, synaptic connectivity, and plasticity to task performance
Insanally, Michele N; Albanna, Badr F; Toth, Jade; DePasquale, Brian; Fadaei, Saba Shokat; Gupta, Trisha; Lombardi, Olivia; Kuchibhotla, Kishore; Rajan, Kanaka; Froemke, Robert C
Neuronal responses during behavior are diverse, ranging from highly reliable 'classical' responses to irregular 'non-classically responsive' firing. While a continuum of response properties is observed across neural systems, little is known about the synaptic origins and contributions of diverse responses to network function, perception, and behavior. To capture the heterogeneous responses measured from auditory cortex of rodents performing a frequency recognition task, we use a novel task-performing spiking recurrent neural network incorporating spike-timing-dependent plasticity. Reliable and irregular units contribute differentially to task performance via output and recurrent connections, respectively. Excitatory plasticity shifts the response distribution while inhibition constrains its diversity. Together both improve task performance with full network engagement. The same local patterns of synaptic inputs predict spiking response properties of network units and auditory cortical neurons from in vivo whole-cell recordings during behavior. Thus, diverse neural responses contribute to network function and emerge from synaptic plasticity rules.
PMCID:11255273
PMID: 39019848
ISSN: 2041-1723
CID: 5699362
Females have lower salivary flow than males, before and after radiation therapy for head/neck cancer
Lalla, Rajesh V; Helgeson, Erika S; Virk, Komal; Lu, Han; Treister, Nathaniel S; Sollecito, Thomas P; Schmidt, Brian L; Patton, Lauren L; Lin, Alexander; Brennan, Michael T
OBJECTIVE:To compare salivary flow rates between females and males, before and after radiation therapy (RT) for head and neck cancer (HNC). METHODS:Prospective observational multicenter cohort study (OraRad). Stimulated whole salivary flow was measured before RT and at 6 and 18 months after RT. RESULTS:Mean (95% confidence interval) salivary flow in g/min before RT was 0.81 (0.71, 0.90) in females (n = 107) and 1.20 (1.15, 1.25) in males (n = 391) (p < 0.001); at 6 months was 0.34 (0.24, 0.44) in females and 0.50 (0.44, 0.55) in males (p = 0.01); at 18 months was 0.49 (0.38, 0.59) in females and 0.70 (0.64, 0.75) in males (p < 0.001). Median nadir salivary flow after RT was 0.22 in females and 0.35 in males (p < 0.001). A lower nadir salivary flow in females, but not males, was associated with an increased risk for tooth failure (p = 0.02). CONCLUSIONS:Females with HNC have lower stimulated whole salivary flow than males, before and after RT. Low salivary flow after RT may be a risk factor for tooth failure among females. The lower pre-RT salivary flow rates in females, combined with prior literature in other populations, indicates that, in general, females have lower stimulated salivary flow than males.
PMID: 39005202
ISSN: 1601-0825
CID: 5754682