Try a new search

Format these results:

Searched for:

school:SOM

Department/Unit:Neuroscience Institute

Total Results:

13474


Functional reclassification of variants of uncertain significance in the HCN4 gene identified in sudden unexpected death

Dong, Jingyun; Subbotina, Ekaterina; Williams, Nori; Sampson, Barbara A; Tang, Yingying; Coetzee, William A
The HCN4 gene encodes a subunit of the hyperpolarization-activated cyclic nucleotide-gated channel, type 4 that is essential for the proper generation of pacemaker potentials in the sinoatrial node. The HCN4 gene is often present in targeted genetic testing panels for various cardiac conduction system disorders and there are several reports of HCN4 variants associated with conduction disorders. Here, we report the in vitro functional characterization of four rare variants of uncertain significance (VUS) in HCN4, identified through testing a cohort of 296 sudden unexpected natural deaths. The variants are all missense alterations, leading to single amino acid changes: p.E66Q in the N-terminus, p.D546N in the C-linker domain, and both p.S935Y and p.R1044Q in the C-terminus distal to the CNBD. We also identified a likely benign variant, p. P1063T, which has a high minor allele frequency in the gnomAD, which is utilized here as a negative control. Three of the HCN4 VUS (p.E66Q, p.S935Y, and p.R1044Q) had electrophysiological characteristics similar to the wild-type channel, suggesting that these variants are benign. In contrast, the p.D546N variant in the C-linker domain exhibited a larger current density, slower activation, and was unresponsive to cyclic adenosine monophosphate (cAMP) compared to wild-type. With functional assays, we reclassified three rare HCN4 VUS to likely benign variants, eliminating the necessity for costly and time-consuming further study. Our studies also provide a new lead to investigate how a VUS located in the C-linker connecting the pore to the cAMP binding domain may affect the channel open state probability and cAMP response.
PMID: 30578647
ISSN: 1540-8159
CID: 3560252

Ensembles of change-point detectors: implications for real-time BMI applications

Xiao, Zhengdong; Hu, Sile; Zhang, Qiaosheng; Tian, Xiang; Chen, Yaowu; Wang, Jing; Chen, Zhe
Brain-machine interfaces (BMIs) have been widely used to study basic and translational neuroscience questions. In real-time closed-loop neuroscience experiments, many practical issues arise, such as trial-by-trial variability, and spike sorting noise or multi-unit activity. In this paper, we propose a new framework for change-point detection based on ensembles of independent detectors in the context of BMI application for detecting acute pain signals. Motivated from ensemble learning, our proposed "ensembles of change-point detectors" (ECPDs) integrate multiple decisions from independent detectors, which may be derived based on data recorded from different trials, data recorded from different brain regions, data of different modalities, or models derived from different learning methods. By integrating multiple sources of information, the ECPDs aim to improve detection accuracy (in terms of true positive and true negative rates) and achieve an optimal trade-off of sensitivity and specificity. We validate our method using computer simulations and experimental recordings from freely behaving rats. Our results have shown superior and robust performance of ECPDS in detecting the onset of acute pain signals based on neuronal population spike activity (or combined with local field potentials) recorded from single or multiple brain regions.
PMID: 30206733
ISSN: 1573-6873
CID: 3278272

Granule cell precursors in the lateral cerebellum are preferentially sensitive to elevated sonic hedgehog signaling and formation of medulloblastoma [Meeting Abstract]

Tan, I L; Wojcinski, A; Rallapalli, H; Lao, Z; Sanighrajka, R M; Stephen, D; Volkova, E; Korshunov, A; Remke, M; Taylor, M D; Turnbull, D H; Joyner, A L
Objective: Granule cell precursors (GCPs) are a sonic hedgehog (SHH)- dependent progenitor population in the developing cerebellum and the main cell of origin for the SHH subgroup of medulloblastoma (MB). Unlike other subgroups of MB, SHH-MBs occur preferentially in the lateral cerebellum (hemispheres) and have four main driver mutations. We studied whether the timing or type of mutation affects tumor location and identified factors influencing SHH-MB progression.
Method(s): We analyzed the association between type of mutation and tumor location in 38 SHH-MB patient samples. To generate sporadic mouse models of SHH-MB, inducible recombinases were used to express a constitutive activate SMO receptor (SmoM2) or delete Ptch1 in only scattered GCPs. Tumor location, expression profiles and GCP behaviors were analyzed in the models.
Result(s): Our analysis of patient data indicates that adult tumors with SMO mutations form more specifically in the hemispheres than those with PTCH1 mutations. Using sporadic mouse models, we found that regardless of the number of GCPs mutated, timing or type of mutation, tumors developed almost exclusively in the hemispheres with SmoM2-mutants showing a stronger specificity. We further uncovered that GCPs in the hemispheres are more susceptible to high level SHH signaling compared to GCPs in the medial cerebellum (vermis), as more mutant cells in the hemisphere remain undifferentiated and show increased tumorigenicity when transplanted. We also identified location-specific gene expression profiles, and found that deletion of the genes most highly expressed in the hemispheres or vermis showed opposing effects on GCP differentiation.
Conclusion(s): We found that GCPs respond differentially to two driver mutations and a subset of GCPs is more susceptible to high level of SHH signaling as well as tumors formation. We redefined themain cell of origin by showing that GCPs are heterogeneous with molecularly distinct populations based on their location
EMBASE:626416259
ISSN: 1473-4230
CID: 3703462

Cystinuria: genetic aspects, mouse models, and a new approach to therapy

Sahota, Amrik; Tischfield, Jay A; Goldfarb, David S; Ward, Michael D; Hu, Longqin
Cystinuria, a genetic disorder of cystine transport, is characterized by excessive excretion of cystine in the urine and recurrent cystine stones in the kidneys and, to a lesser extent, in the bladder. Males generally are more severely affected than females. The disorder may lead to chronic kidney disease in many patients. The cystine transporter (b0,+) is a heterodimer consisting of the rBAT (encoded by SLC3A1) and b0,+AT (encoded by SLC7A9) subunits joined by a disulfide bridge. The molecular basis of cystinuria is known in great detail, and this information is now being used to define genotype-phenotype correlations. Current treatments for cystinuria include increased fluid intake to increase cystine solubility and the administration of thiol drugs for more severe cases. These drugs, however, have poor patient compliance due to adverse effects. Thus, there is a need to reduce or eliminate the risks associated with therapy for cystinuria. Four mouse models for cystinuria have been described and these models provide a resource for evaluating the safety and efficacy of new therapies for cystinuria. We are evaluating a new approach for the treatment of cystine stones based on the inhibition of cystine crystal growth by cystine analogs. Our ongoing studies indicate that cystine diamides are effective in preventing cystine stone formation in the Slc3a1 knockout mouse model for cystinuria. In addition to crystal growth, crystal aggregation is required for stone formation. Male and female mice with cystinuria have comparable levels of crystalluria, but very few female mice form stones. The identification of factors that inhibit cystine crystal aggregation in female mice may provide insight into the gender difference in disease severity in patients with cystinuria.
PMID: 30515543
ISSN: 2194-7236
CID: 3520662

Empiric therapy for kidney stones

Goldfarb, David S
Careful phenotyping of patients to classify those with kidney stones has a long and important history in revealing the chemical basis for stone formation. Advances in our genetic understanding of kidney stones will lead to incredible insights regarding the pathophysiology of this common disorder. At this time, both evaluation of urine chemistry and genotyping of patients are extremely useful in the setting of a university and research-based kidney stone clinic. For much of the world, in a more clinically focused setting, these techniques are neither available nor absolutely necessary. Careful implementation of an empiric prescription based on stone composition would have an important effect to reduce stone recurrence in the world's many stone formers. Increased fluid intake, generic dietary manipulations, and prescription of potassium citrate and thiazides are all appropriate empiric therapies for people with calcium and uric acid kidney stones.
PMCID:6361718
PMID: 30478476
ISSN: 2194-7236
CID: 3657852

The Value of Homework: Exposure to Odors in the Home Cage Enhances Odor-Discrimination Learning in Mice

Fleming, Gloria; Wright, Beverly A; Wilson, Donald A
Perceptual learning is an enhancement in discriminability of similar stimuli following experience with those stimuli. Here, we examined the efficacy of adding additional active training following a standard training session, compared with additional stimulus exposure in the absence of associated task performance. Mice were trained daily in an odor-discrimination task, and then, several hours later each day, received 1 of 3 different manipulations: 1) a second active-training session, 2) non-task-related odor exposure in the home cage, or 3) no second session. For home-cage exposure, odorants were presented in small tubes that mice could sniff and investigate for a similar period of time as in the active discrimination task each day. The results demonstrate that daily home-cage exposure was equivalent to active odor training in supporting improved odor discrimination. Daily home-cage exposure to odorants that did not match those used in the active task did not improve learning, yielding outcomes similar to those obtained with no second session. Piriform cortical local field potential recordings revealed that both sampling in the active learning task and investigation in the home cage evoked similar beta band oscillatory activity. Together the results suggest that odor-discrimination learning can be significantly enhanced by addition of odor exposure outside of the active training task, potentially because of the robust activity evoked in the olfactory system by both exposure paradigms. They further suggest that odorant exposure alone could enhance or maintain odor-discrimination abilities in conditions associated with olfactory impairment, such as aging or dementia.
PMCID:6350676
PMID: 30590399
ISSN: 1464-3553
CID: 3783142

ADGRL3 (LPHN3) variants predict substance use disorder

Arcos-Burgos, Mauricio; Vélez, Jorge I; Martinez, Ariel F; Ribasés, Marta; Ramos-Quiroga, Josep A; Sánchez-Mora, Cristina; Richarte, Vanesa; Roncero, Carlos; Cormand, Bru; Fernández-Castillo, Noelia; Casas, Miguel; Lopera, Francisco; Pineda, David A; Palacio, Juan D; Acosta-López, Johan E; Cervantes-Henriquez, Martha L; Sánchez-Rojas, Manuel G; Puentes-Rozo, Pedro J; Molina, Brooke S G; Boden, Margaret T; Wallis, Deeann; Lidbury, Brett; Newman, Saul; Easteal, Simon; Swanson, James; Patel, Hardip; Volkow, Nora; Acosta, Maria T; Castellanos, Francisco X; de Leon, Jose; Mastronardi, Claudio A; Muenke, Maximilian
Genetic factors are strongly implicated in the susceptibility to develop externalizing syndromes such as attention-deficit/hyperactivity disorder (ADHD), oppositional defiant disorder, conduct disorder, and substance use disorder (SUD). Variants in the ADGRL3 (LPHN3) gene predispose to ADHD and predict ADHD severity, disruptive behaviors comorbidity, long-term outcome, and response to treatment. In this study, we investigated whether variants within ADGRL3 are associated with SUD, a disorder that is frequently co-morbid with ADHD. Using family-based, case-control, and longitudinal samples from disparate regions of the world (n = 2698), recruited either for clinical, genetic epidemiological or pharmacogenomic studies of ADHD, we assembled recursive-partitioning frameworks (classification tree analyses) with clinical, demographic, and ADGRL3 genetic information to predict SUD susceptibility. Our results indicate that SUD can be efficiently and robustly predicted in ADHD participants. The genetic models used remained highly efficient in predicting SUD in a large sample of individuals with severe SUD from a psychiatric institution that were not ascertained on the basis of ADHD diagnosis, thus identifying ADGRL3 as a risk gene for SUD. Recursive-partitioning analyses revealed that rs4860437 was the predominant predictive variant. This new methodological approach offers novel insights into higher order predictive interactions and offers a unique opportunity for translational application in the clinical assessment of patients at high risk for SUD.
PMCID:6351584
PMID: 30696812
ISSN: 2158-3188
CID: 3626662

Spike-timing-dependent ensemble encoding by non-classically responsive cortical neurons

Insanally, Michele N; Carcea, Ioana; Field, Rachel E; Rodgers, Chris C; DePasquale, Brian; Rajan, Kanaka; DeWeese, Michael R; Albanna, Badr F; Froemke, Robert C
Neurons recorded in behaving animals often do not discernibly respond to sensory input and are not overtly task-modulated. These non-classically responsive neurons are difficult to interpret and are typically neglected from analysis, confounding attempts to connect neural activity to perception and behavior. Here we describe a trial-by-trial, spike-timing-based algorithm to reveal the coding capacities of these neurons in auditory and frontal cortex of behaving rats. Classically responsive and non-classically responsive cells contained significant information about sensory stimuli and behavioral decisions. Stimulus category was more accurately represented in frontal cortex than auditory cortex, via ensembles of non-classically responsive cells coordinating the behavioral meaning of spike timings on correct but not error trials. This unbiased approach allows the contribution of all recorded neurons - particularly those without obvious task-related, trial-averaged firing rate modulation - to be assessed for behavioral relevance on single trials.
PMID: 30688649
ISSN: 2050-084x
CID: 3626322

CaImAn an open source tool for scalable calcium imaging data analysis

Giovannucci, Andrea; Friedrich, Johannes; Gunn, Pat; Kalfon, Jérémie; Brown, Brandon L; Koay, Sue Ann; Taxidis, Jiannis; Najafi, Farzaneh; Gauthier, Jeffrey L; Zhou, Pengcheng; Khakh, Baljit S; Tank, David W; Chklovskii, Dmitri B; Pnevmatikakis, Eftychios A
Advances in fluorescence microscopy enable monitoring larger brain areas in-vivo with finer time resolution. The resulting data rates require reproducible analysis pipelines that are reliable, fully automated, and scalable to datasets generated over the course of months. We present CaImAn, an open-source library for calcium imaging data analysis. CaImAn provides automatic and scalable methods to address problems common to pre-processing, including motion correction, neural activity identification, and registration across different sessions of data collection. It does this while requiring minimal user intervention, with good scalability on computers ranging from laptops to high-performance computing clusters. CaImAn is suitable for two-photon and one-photon imaging, and also enables real-time analysis on streaming data. To benchmark the performance of CaImAn we collected and combined a corpus of manual annotations from multiple labelers on nine mouse two-photon datasets. We demonstrate that CaImAn achieves near-human performance in detecting locations of active neurons.
PMCID:6342523
PMID: 30652683
ISSN: 2050-084x
CID: 3682462

A new automated device for quantifying mechanical nociceptive responses

Dale, Jahrane; Zhou, Haocheng; Zhang, Qiaosheng; Singh, Amrita; Wang, Jing
BACKGROUND:Traditional methods to assess pain in rodents depend on measures of nociceptive responses, most commonly from the hind paws. While these measures can quantify nociceptive responses to allow pharmacologic testing, they typically have high inter-experimenter variability and are not time-sensitive enough to correct with neural processes that occur on millisecond scales. NEW METHOD/UNASSIGNED:We have invented a pain detection device that uses changes in skin conductance to measure nocifensive withdrawal responses. This device automatically records how long it takes for a rodent to withdraw its paw from the onset of peripheral noxious stimulation. RESULTS:with this pain device, we can record accurate timing (on the millisecond scale) for nociceptive responses, with high accuracy and consistency. Furthermore, we demonstrate that this device can allow us to distinguish the nociceptive response to mechanical noxious stimuli of different intensities. Finally, we demonstrate that this device can be digitally integrated to correlate behavior with neural activities in real-time. CONCLUSIONS:This study demonstrates a new automated, temporally specific method for quantifying nociceptive responses to facilitate rodent pain studies.
PMID: 30521828
ISSN: 1872-678x
CID: 3520802