Searched for: school:SOM
Department/Unit:Neuroscience Institute
Multisensory Control of Orientation in Tethered Flying Drosophila
Currier, Timothy A; Nagel, Katherine I
A longstanding goal of systems neuroscience is to quantitatively describe how the brain integrates sensory cues over time. Here, we develop a closed-loop orienting paradigm in Drosophila to study the algorithms by which cues from two modalities are integrated during ongoing behavior. We find that flies exhibit two behaviors when presented simultaneously with an attractive visual stripe and aversive wind cue. First, flies perform a turn sequence where they initially turn away from the wind but later turn back toward the stripe, suggesting dynamic sensory processing. Second, turns toward the stripe are slowed by the presence of competing wind, suggesting summation of turning drives. We develop a model in which signals from each modality are filtered in space and time to generate turn commands and then summed to produce ongoing orienting behavior. This computational framework correctly predicts behavioral dynamics for a range of stimulus intensities and spatial arrangements.
PMID: 30393038
ISSN: 1879-0445
CID: 3480502
Biomimetic Synthesis of (+)-Aspergillin PZ
Reyes, Julius R; Winter, Nils; Spessert, Lukas; Trauner, Dirk
The cytochalasans are a large family of polyketide natural products with potent bioactivities. Amongst them, the aspochalasins show particularly intricate and fascinating structures. To gain insight into their structural diversity and innate reactivity, we have developed a rapid synthesis of aspochalasin D, the central member of the family. It proceeded in 13 steps starting from divinyl carbinol and utilized a high pressure Diels-Alder reaction that features high regio- and stereoselectivity. So far, our work has culminated in a biomimetic synthesis of aspergillin PZ, an intricate pentacyclic aspochalasan.
PMID: 30239081
ISSN: 1521-3773
CID: 3400332
Continuous performance test impairment in a 22q11.2 microdeletion mouse model: improvement by amphetamine
Nilsson, Simon R O; Heath, Christopher J; Takillah, Samir; Didienne, Steve; Fejgin, Kim; Nielsen, Vibeke; Nielsen, Jacob; Saksida, Lisa M; Mariani, Jean; Faure, Philippe; Didriksen, Michael; Robbins, Trevor W; Bussey, Timothy J; Mar, Adam C
The 22q11.2 deletion syndrome (22q11.2DS) confers high risk of neurodevelopmental disorders such as schizophrenia and attention-deficit hyperactivity disorder. These disorders are associated with attentional impairment, the remediation of which is important for successful therapeutic intervention. We assessed a 22q11.2DS mouse model (Df(h22q11)/+) on a touchscreen rodent continuous performance test (rCPT) of attention and executive function that is analogous to human CPT procedures. Relative to wild-type littermates, Df(h22q11)/+ male mice showed impaired attentional performance as shown by decreased correct response ratio (hit rate) and a reduced ability to discriminate target stimuli from non-target stimuli (discrimination sensitivity, or d'). The Df(h22q11)/+ model exhibited decreased prefrontal cortical-hippocampal oscillatory synchrony within multiple frequency ranges during quiet wakefulness, which may represent a biomarker of cognitive dysfunction. The stimulant amphetamine (0-1.0 mg/kg, i.p.) dose-dependently improved d' in Df(h22q11)/+ mice whereas the highest dose of modafinil (40 mg/kg, i.p.) exacerbated their d' impairment. This is the first report to directly implicate attentional impairment in a 22q11.2DS mouse model, mirroring a key endophenotype of the human disorder. The capacity of the rCPT to detect performance impairments in the 22q11.2DS mouse model, and improvement following psychostimulant-treatment, highlights the utility and translational potential of the Df(h22q11)/+ model and this automated behavioral procedure.
PMID: 30429456
ISSN: 2158-3188
CID: 3457462
Introduction: Optogenetics and Photopharmacology
Bamberg, Ernst; Gärtner, Wolfgang; Trauner, Dirk
PMID: 30424609
ISSN: 1520-6890
CID: 3457982
In Vivo Photopharmacology
Hüll, Katharina; Morstein, Johannes; Trauner, Dirk
Synthetic photoswitches have been known for many years, but their usefulness in biology, pharmacology, and medicine has only recently been systematically explored. Over the past decade photopharmacology has grown into a vibrant field. As the photophysical, pharmacodynamic, and pharmacokinetic properties of photoswitches, such as azobenzenes, have become established, they have been applied to a wide range of biological targets. These include transmembrane proteins (ion channels, transporters, G protein-coupled receptors, receptor-linked enzymes), soluble proteins (kinases, proteases, factors involved in epigenetic regulation), lipid membranes, and nucleic acids. In this review, we provide an overview of photopharmacology using synthetic switches that have been applied in vivo, i.e., in living cells and organisms. We discuss the scope and limitations of this approach to study biological function and the challenges it faces in translational medicine. The relationships between synthetic photoswitches, natural chromophores used in optogenetics, and caged ligands are addressed.
PMID: 29985590
ISSN: 1520-6890
CID: 3191782
Origin of Gamma Frequency Power during Hippocampal Sharp-Wave Ripples
Oliva, Azahara; Fernández-Ruiz, Antonio; Fermino de Oliveira, Eliezyer; Buzsaki, Gyorgy
Hippocampal sharp-wave ripples (SPW-Rs) support consolidation of recently acquired episodic memories and planning future actions by generating ordered neuronal sequences of previous or future experiences. SPW-Rs are characterized by several spectral components: a slow (5-15Â Hz) sharp-wave, a high-frequency "ripple" oscillation (150-200Â Hz), and a slow "gamma" oscillation (20-40Â Hz). Using laminar hippocampal recordings and optogenetic manipulations, we dissected the origin of these spectral components. We show that increased power in the 20-40Â Hz band does not reflect an entrainment of CA1 and CA3 neurons at gamma frequency but the power envelope of overlapping ripples. Spike-local field potential coupling between unit firing in CA1 and CA3 regions during SPW-Rs is lowest in the gamma band. Longer SPW-Rs are preceded by increased firing in the entorhinal cortex. Thus, fusion of SPW-Rs leads to lengthening of their duration associated with increased power in the slow gamma band without the presence of true oscillation.
PMID: 30428340
ISSN: 2211-1247
CID: 3487742
Permanent and Transient Electrophysiological Effects During Cardiac Cryoablation Documented by Optical Activation Mapping and Thermal Imaging
Morley, Greg; Bernstein, Scott; Kuznekoff, Laura; Vasquez, Carolina; Saul, Phil; Haemmerich, Dieter
OBJECTIVE:Cardiac catheter cryoablation is a safer alternative to radiofrequency ablation for arrhythmia treatment, but electrophysiological (EP) effects during and after freezing are not adequately characterized. The goal of this study was to determine transient and permanent temperature induced EP effects, during and after localized tissue freezing. METHODS:Conduction in right (RV) and left ventricles (LV) was studied by optical activation mapping during and after cryoablation in paced, isolated Langendorff-perfused porcine hearts. Cryoablation was performed endocardially (n=4) or epicardially (n=4) by a cryoprobe cooled to -120 °C for 8 minutes. Epicardial surface temperature was imaged with an infrared camera. Viability staining was performed after ablation. Motion compensation and co-registration was performed between optical mapping data, temperature image data, and lesion images. RESULTS:Cryoablation produced lesions 14.9 +/- 3.1 mm in diameter and 5.8 +/- 1.7 mm deep. A permanent lesion was formed in tissue cooled below -5 +/- 4 °C. Transient EP changes observed at temperatures between 17 and 37 °C during cryoablation surrounding the frozen tissue region directly correlated with local temperature, and include action potential (AP) duration prolongation, decrease in AP magnitude, and slowing in conduction velocity (Q10=2.0). Transient conduction block was observed when epicardial temperature reached <17 °C, but completely resolved upon tissue rewarming, within 5 minutes. CONCLUSION/CONCLUSIONS:Transient EP changes were observed surrounding the permanent cryo lesion (<-5 °C), including conduction block (-5 to 17 °C), and reduced conduction velocity (>17 °C). SIGNIFICANCE/CONCLUSIONS:The observed changes explain effects observed during clinical cryoablation, including transient increases in effective refractory period, transient conduction block, and transient slowing of conduction. The presented quantitative data on temperature dependence of EP effects may enable the prediction of the effects of clinical cryoablation devices.
PMID: 30418875
ISSN: 1558-2531
CID: 3657812
Oxytocin Transforms Firing Mode of CA2 Hippocampal Neurons
Tirko, Natasha N; Eyring, Katherine W; Carcea, Ioana; Mitre, Mariela; Chao, Moses V; Froemke, Robert C; Tsien, Richard W
Oxytocin is an important neuromodulator in the mammalian brain that increases information salience and circuit plasticity, but its signaling mechanisms and circuit effect are not fully understood. Here we report robust oxytocinergic modulation of intrinsic properties and circuit operations in hippocampal area CA2, a region of emerging importance for hippocampal function and social behavior. Upon oxytocin receptor activation, CA2 pyramidal cells depolarize and fire bursts of action potentials, a consequence of phospholipase C signaling to modify two separate voltage-dependent ionic processes. A reduction of potassium current carried by KCNQ-based M channels depolarizes the cell; protein kinase C activity attenuates spike rate of rise and overshoot, dampening after-hyperpolarizations. These actions, in concert with activation of fast-spiking interneurons, promote repetitive firing and CA2 bursting; bursting then governs short-term plasticity of CA2 synaptic transmission onto CA1 and, thus, efficacy of information transfer in the hippocampal network.
PMID: 30293821
ISSN: 1097-4199
CID: 3334812
Characterization of a Mouse Model of Börjeson-Forssman-Lehmann Syndrome
Cheng, Cheng; Deng, Pan-Yue; Ikeuchi, Yoshiho; Yuede, Carla; Li, Daofeng; Rensing, Nicholas; Huang, Ju; Baldridge, Dustin; Maloney, Susan E; Dougherty, Joseph D; Constantino, John; Jahani-Asl, Arezu; Wong, Michael; Wozniak, David F; Wang, Ting; Klyachko, Vitaly A; Bonni, Azad
Mutations of the transcriptional regulator PHF6 cause the X-linked intellectual disability disorder Börjeson-Forssman-Lehmann syndrome (BFLS), but the pathogenesis of BFLS remains poorly understood. Here, we report a mouse model of BFLS, generated using a CRISPR-Cas9 approach, in which cysteine 99 within the PHD domain of PHF6 is replaced with phenylalanine (C99F). Mice harboring the patient-specific C99F mutation display deficits in cognitive functions, emotionality, and social behavior, as well as reduced threshold to seizures. Electrophysiological studies reveal that the intrinsic excitability of entorhinal cortical stellate neurons is increased in PHF6 C99F mice. Transcriptomic analysis of the cerebral cortex in C99F knockin mice and PHF6 knockout mice show that PHF6 promotes the expression of neurogenic genes and represses synaptic genes. PHF6-regulated genes are also overrepresented in gene signatures and modules that are deregulated in neurodevelopmental disorders of cognition. Our findings advance our understanding of the mechanisms underlying BFLS pathogenesis.
PMID: 30403997
ISSN: 2211-1247
CID: 3456022
Mechanisms underlying contrast-dependent orientation selectivity in mouse V1
Dai, Wei P; Zhou, Douglas; McLaughlin, David W; Cai, David
Recent experiments have shown that mouse primary visual cortex (V1) is very different from that of cat or monkey, including response properties-one of which is that contrast invariance in the orientation selectivity (OS) of the neurons' firing rates is replaced in mouse with contrast-dependent sharpening (broadening) of OS in excitatory (inhibitory) neurons. These differences indicate a different circuit design for mouse V1 than that of cat or monkey. Here we develop a large-scale computational model of an effective input layer of mouse V1. Constrained by experiment data, the model successfully reproduces experimentally observed response properties-for example, distributions of firing rates, orientation tuning widths, and response modulations of simple and complex neurons, including the contrast dependence of orientation tuning curves. Analysis of the model shows that strong feedback inhibition and strong orientation-preferential cortical excitation to the excitatory population are the predominant mechanisms underlying the contrast-sharpening of OS in excitatory neurons, while the contrast-broadening of OS in inhibitory neurons results from a strong but nonpreferential cortical excitation to these inhibitory neurons, with the resulting contrast-broadened inhibition producing a secondary enhancement on the contrast-sharpened OS of excitatory neurons. Finally, based on these mechanisms, we show that adjusting the detailed balances between the predominant mechanisms can lead to contrast invariance-providing insights for future studies on contrast dependence (invariance).
PMID: 30337480
ISSN: 1091-6490
CID: 3370082